Advertisement

Marine Biology

, Volume 156, Issue 11, pp 2209–2220 | Cite as

Implication of nitric oxide in the heat-stress-induced cell death of the symbiotic alga Symbiodinium microadriaticum

  • Josée Nina BouchardEmail author
  • Hideo Yamasaki
Original Paper

Abstract

One of the major consequences of global warming is a rise in sea surface temperature which may affect the survival of marine organisms including phytoplankton. Here, we provide experimental evidence for heat-induced cell death in a symbiotic microalga. Shifting Symbiodinium microadriaticum from 27 to 32°C resulted in an increase in mortality, an increase in caspase 3-like activity, and an increase in nitric oxide (NO) production. The caspase-like activity was strongly correlated with the production of NO in thermally challenged microalgae. For this experiment, the application of Ac-DEVD-CHO, a mammalian caspase 3-specific inhibitor, partly prevented (by 65%) the increase in caspase-like activity. To verify the relationship between NO and the caspase-like activity, S. microadriaticum were subsequently incubated with 1.0 mM of the following chemical NO donors: sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine (SNAP) and 3,3bis(Aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18). The supplementation of both SNP and NOC-18 caused a significant increase in caspase-like activity compared to the control treatment. Pre-treatment of the microalgae with the inhibitor Ac-DEVD-CHO before the supplementation of the different NO donors completely prevented the increase in caspase-like activity. These results suggest that NO could play a role in the induction of cell death in heat-stressed S. microadriaticum by mediating an increase in caspase-like activity.

Keywords

Nitric Oxide Phytoplankton Microalgae Programme Cell Death Dinoflagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

H2O2

Hydrogen peroxide

NO

Nitric oxide

O2

Superoxide

ONOO

Peroxinitrite

PCD

Programmed cell death

ROIs

Reactive oxygen intermediates

Notes

Acknowledgments

This work was made possible by a JSPS postdoctoral fellowship granted to J.N.B and by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Science, Sports and Culture, Japan to H.Y.

References

  1. Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954PubMedCrossRefGoogle Scholar
  2. Almeida B, Buttner S, Ohlmeier S, Silva A, Mesquita A, Sampaio-Marques B, Osório NS, Kollau A, Mayer B, Leão C, Laranjinha J, Rodrigues F, Madeo F, Ludovico P (2007) NO-mediated apoptosis in yeast. J Cell Sci 120:3279–3288PubMedCrossRefGoogle Scholar
  3. Berges JA, Falkowski PG (1998) Physiological stress and cell death in marine phytoplankton: induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr 43:129–135Google Scholar
  4. Berman-Frank I, Bidle KD, Haramaty L, Falkowski PG (2004) The demise of the marine cyanobacterium Trichodesmium spp., via an autocatalysed cell death pathway. Limnol Oceanogr 49:997–1005Google Scholar
  5. Bidle KD, Bender SJ (2008) Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot Cell 7:223–236PubMedCrossRefGoogle Scholar
  6. Bidle KD, Falkowski PG (2004) Cell death in planktonic, photosynthetic microorganisms. Nat Rev 2:643–655CrossRefGoogle Scholar
  7. Bidle KD, Hamaraty L, Barcelos e Ramos J, Falkowski P (2007) Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc Natl Acad Sci USA 104:6049–6054PubMedCrossRefGoogle Scholar
  8. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59(3):491–499. doi: 10.1093/jxb/erm352 Google Scholar
  9. Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49:641–652PubMedCrossRefGoogle Scholar
  10. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468PubMedCrossRefGoogle Scholar
  11. Brüne B (2003) Nitric oxide: NO apoptosis or turning it ON. Cell Death Differ 10:864–869PubMedCrossRefGoogle Scholar
  12. Brussaard CPD, Marie D, Thyrhaug R, Bratbak G (2001) Flow cytometric analysis of phytoplankton viability following viral infection. Aquat Microb Ecol 26:157–166CrossRefGoogle Scholar
  13. Buma AG, Zemmerlink HJ, Sjollema K, Gieskes WWC (1996) UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. Mar Ecol Prog Ser 142:47–54CrossRefGoogle Scholar
  14. Chung C-C, Hwang S-PL, Chang J (2008) Nitric oxide as a signalling factor to upregulate the death-specific protein in a marine diatom, Skeletonema costatum, during blockage of electron flow in photosynthesis. Appl Env Microbiol 74:6521–6527CrossRefGoogle Scholar
  15. Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677PubMedCrossRefGoogle Scholar
  16. Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223PubMedCrossRefGoogle Scholar
  17. Darehshouri A, Affenzeller M, Lütz-Meindl U (2008) Cell death upon H2O2 induction in the unicellular green alga Micrasterias. Plant Biol 10:32–745CrossRefGoogle Scholar
  18. de Pinto MC, Tommasi F, De Gara L (2002) Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiol 130:1–11CrossRefGoogle Scholar
  19. Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396PubMedCrossRefGoogle Scholar
  20. Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588PubMedCrossRefGoogle Scholar
  21. Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459PubMedCrossRefGoogle Scholar
  22. Deponte M (2008) Programmed cell death in protists. Biochem Biophys Acta 1783(7):1396–1405. doi: 10.1016/j.bbamcr.2008.01.018 Google Scholar
  23. Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53CrossRefGoogle Scholar
  24. Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222PubMedCrossRefGoogle Scholar
  25. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every way you lose. Proc R Soc B 274:3079–3085PubMedCrossRefGoogle Scholar
  26. Esch P, Techel D, Schimmoller N, Rensing L (1995) Heat shock effects on the circadian rhythm of protein synthesis and phosphorylation of ribosomal proteins in Gonyaulax polyedra. Chronobiol Int 12:369–381CrossRefGoogle Scholar
  27. Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C (2008) The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci USA 105:15944–15949PubMedCrossRefGoogle Scholar
  28. Franklin DJ, Berges JA (2004) Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness. Proc Biol Sci 271:2099–2107PubMedCrossRefGoogle Scholar
  29. Franklin DJ, Hoegh-Guldberg O, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Progr Ser 272:117–130CrossRefGoogle Scholar
  30. Franklin DJ, Brussaard CPD, Berges JA (2006) What is the role and nature of programmed cell death in phytoplankton ecology? Eur J Phycol 41:1–14CrossRefGoogle Scholar
  31. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60Google Scholar
  32. Hoegh-Guldberg O (1999) Climate change and World’s coral reefs: implications for the Great Barrier Reef. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  33. Hong JK, Yun B-W, Kang J-G, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signaling in plant disease resistance. J Exp Bot 59:147–154PubMedCrossRefGoogle Scholar
  34. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  35. Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60(3):815–828. doi: 10.1093/jxb/ern330 Google Scholar
  36. Kirchman DL (1999) Phytoplankton death in the sea. Nature 398:293–294CrossRefGoogle Scholar
  37. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed 38:3209–3212CrossRefGoogle Scholar
  38. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377CrossRefGoogle Scholar
  39. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917PubMedCrossRefGoogle Scholar
  40. Miller-Morey JS, Van Dolah FM (2004) Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Physiol C 138:493–505Google Scholar
  41. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004a) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953PubMedCrossRefGoogle Scholar
  42. Murgia I, Concetta de Pinto M, Delledonne M, Soave C, De Gara L (2004b) Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and cell redox state in plant cells. J. Plant Physiol 161:777–783PubMedCrossRefGoogle Scholar
  43. Nedelcu AM, Miles IH, Fagir AM, Karol K (2008) Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21:1852–1860PubMedCrossRefGoogle Scholar
  44. Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35PubMedCrossRefGoogle Scholar
  45. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042PubMedCrossRefGoogle Scholar
  46. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju AM, Smulson ME, Yamin T-T, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43PubMedCrossRefGoogle Scholar
  47. Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645PubMedCrossRefGoogle Scholar
  48. Pedroso MC, Magalhaes JR, Durzan D (2000) A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51:1027–1036PubMedCrossRefGoogle Scholar
  49. Perez S, Weis V (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J Exp Biol 209:2804–2810PubMedCrossRefGoogle Scholar
  50. Piszczek E, Gutman W (2007) Caspase-like proteases and their role in programmed cell death in plants. Acta Physiol Plant 29:391–398CrossRefGoogle Scholar
  51. Richier S, Sabourault C, Courtiade J, Zucchini N, Allemand D (2006) Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS J 273:4186–4198PubMedCrossRefGoogle Scholar
  52. Ross C, Santiago-Vázquez L, Paul V (2006) Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 78:66–73PubMedCrossRefGoogle Scholar
  53. Saunders BK, Muller-Parker G (1997) The effects of temperature and light on two algal populations in the temperate sea anemone Anthopleura elegantissima (Brandt, 1835). J Exp Mar Biol Ecol 211:213–224CrossRefGoogle Scholar
  54. Saviani EE, Orsi CH, Oliveira JFP, Pinto-Maglio CAF, Salgado I (2002) Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett 510:136–140PubMedCrossRefGoogle Scholar
  55. Scheiner SM, Gurevitch J (2001) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, New York, p 415Google Scholar
  56. Segovia M (2008) Programmed cell death in dinoflagellates. In: Pérez Martin JM (ed) Programmed cell death in protozoa. Landes Bioscience, Austin, pp 126–142CrossRefGoogle Scholar
  57. Segovia M, Berges JA (2005) Effects of inhibitors of protein synthesis and DNA replication on the induction of proteolytic activities, caspase-like activities and cell death in the unicellular chlorophyte Dunaliella tertiolecta. Eur J Phycol 40:21–30CrossRefGoogle Scholar
  58. Segovia M, Haramati L, Berges JA, Falkowski PG (2003) Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiol 132:99–105PubMedCrossRefGoogle Scholar
  59. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255PubMedCrossRefGoogle Scholar
  60. Thornberry NA (1999) Caspases: a decade of death research. Cell Death Differ 6:1023–1027PubMedCrossRefGoogle Scholar
  61. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  62. Timmermans KR, Veldhuis MJW, Brussaard CPD (2007) Cell death in three marine diatom species in response to different irradiance levels, silicate or iron concentrations. Aquat Microb Ecol 46:253–261CrossRefGoogle Scholar
  63. Trapido-Rosenthal HG, Sharp KH, Galloway TS, Morrall CE (2001) Nitric oxide and cnidarian-dinoflagellate symbioses: pieces of a puzzle. Am Zool 41:247–257CrossRefGoogle Scholar
  64. Uren AG, O’Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967PubMedGoogle Scholar
  65. Vardi A, Berman-Frank I, Rozenberg T, Hadas O, Kaplan A, Levine A (1999) Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr Biol 9:1061–1064PubMedCrossRefGoogle Scholar
  66. Vardi A, Eisenstadt D, Murik O, Berman-Frank I, Zohary T, Levine A, Kaplan A (2007) Synchronisation of cell death in a dinoflagellate population is mediated by an excreted thiol protease. Environ Microbiol 9:360–369PubMedCrossRefGoogle Scholar
  67. Vardi A, Bidle D, Kwityn C, Hirsh DJ, Thompson SM, Callow JA, Falkowski P, Bowler C (2008) A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 18:895–899PubMedCrossRefGoogle Scholar
  68. Veldhuis MJW, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33:527–541CrossRefGoogle Scholar
  69. Veldhuis MJW, Kraay GW, Timmermans KR (2001) Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur J Phycol 36:167–177CrossRefGoogle Scholar
  70. Vercammen D, Van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inzé D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 44:45329–45336CrossRefGoogle Scholar
  71. Vincent W (1983) Fluorescence properties of the freshwater phytoplankton: three algal classes compared. Br Phycol J 18:5–21CrossRefGoogle Scholar
  72. Warner ME, Fitt WK, Schmidt GW (1996) The effect of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299CrossRefGoogle Scholar
  73. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699PubMedCrossRefGoogle Scholar
  74. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066PubMedCrossRefGoogle Scholar
  75. Wilkerson FP, Muller Parker G, Muscatine L (1983) Temporal patterns of cell division in natural populations of endosymbiotic algae. Limnol Oceanogr 28:1009–1014CrossRefGoogle Scholar
  76. Wink DA, Cook JA, Pacelli R, DeGraff W, Gamson J, Liebmann J, Krishna MA, Mitchell JB (1996) The effect of various nitric oxide-donor agents on hydrogen peroxide-mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch Biochem Biophys 331:241–248PubMedCrossRefGoogle Scholar
  77. Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411PubMedCrossRefGoogle Scholar
  78. Zheng-Bin Z, Chun-Ying L, Zhen-Zhen W, Lei X, Pei-Feng L (2006) Detection of nitric oxide in culture media and studies on nitric oxide formation by marine microalgae. Med Sci Monit 12:BR75–BR85Google Scholar
  79. Zuppini A, Andreoli C, Baldan B (2007) Heat stress: an inducer of programmed cell death in Chlorella saccarophila. Plant Cell Physiol 48:1000–1009PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of the RyukyusNishiharaJapan
  2. 2.National Oceanography CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations