Marine Biology

, Volume 156, Issue 10, pp 2021–2031 | Cite as

Influence of emergence success on the annual reproductive output of leatherback turtles

  • Pilar Santidrián Tomillo
  • Jack S. Suss
  • Bryan P. Wallace
  • Kimberly D. Magrini
  • Gabriela Blanco
  • Frank V. Paladino
  • James R. Spotila
Original Paper


Reproductive output of leatherback turtles (Dermochelys coriacea) is affected by the stochastic nature of emergence success. Average emergence success of nests at Playa Grande, Costa Rica was 0.38 ± 0.27. Incubation temperature affected development of leatherback turtle eggs and emergence of hatchlings from the nest. We found that high temperatures reduced hatching success and emergence rate and increased embryonic mortality both early and late during incubation at Playa Grande. There was a temporal effect on emergence success that resulted in more hatchlings being produced at the beginning of the season, because of higher emergence success, than toward the end. Likewise, production of hatchlings varied from year to year. The average annual reproductive output was 252 ± 141 hatchlings per female. The 2005–2006 nesting season had the highest emergence success and produced the greatest number of hatchlings per female compared to the 2004–2005 (+120%) and 2006–2007 (+41%) seasons. However, average clutch size (62 ± 10) and clutch frequency (9.45 ± 1.63), were not different among years. Turtles that had nested a high number of years exhibited greater clutch frequency and arrived earlier to nest than turtles that had nested in fewer numbers of years. Nesting when environmental conditions favor high developmental success and emergence rate may constitute an advantageous reproductive strategy.



We would like to thank field assistants and Earthwatch volunteers for their help during the data collection, especially P. Clune, C. Williams, E. Gilligan, E. Dalton, A. Hall, C. Manrique, S. Valentine and T. Dornfeld. We thank A. Sieg and anonymous reviewers for statistical assistance and comments on the manuscript. This research was financially supported by The Leatherback Trust, the Earthwatch Institute and the Betz Chair Endowment of Drexel University. Special thanks to the Goldring Marine Biology Station for accommodation and support during the field seasons. The study was approved by the Animal Care committee of Drexel University and was conducted under MINAET permits.


  1. Ackerman RA (1997) The nest environment and the embryonic development of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 83–106Google Scholar
  2. Bell BA, Spotila JR, Paladino FV, Reina RD (2003) Low reproductive success of leatherback turtles, Dermochelys coriacea, is due to high embryonic mortality. Biol Conserv 115:131–138. doi:10.1016/S0006-3207(03)00102-2 CrossRefGoogle Scholar
  3. Benton TG, Grant A, Clutton-Brock TH (1995) Does environmental stochasticity matter? Analysis of red deer life histories on Rum. Evol Ecol 9:559–574CrossRefGoogle Scholar
  4. Bilinski JJ, Reina RD, Spotila JR, Paladino FV (2001) The effects of nest environment on calcium mobilization by leatherback turtle embryos (Dermochelys coriacea) during development. Comp Biochem Physiol A 130:151–162. doi:10.1016/S1095-6433(01)00374-9 CrossRefGoogle Scholar
  5. Billett FS, Collins P, Goulding DA, Sutherland J (1992) The development of Caretta caretta, at 25–34°C, in artificial nests. J Morphol 213:251–263CrossRefGoogle Scholar
  6. Binckley CA, Spotila JR, Wilson KS, Paladino FV (1998) Sex determination and sex ratios of Pacific leatherback turtles, Dermochelys coriacea. Copeia 1998:291–300CrossRefGoogle Scholar
  7. Bustard HR (1967) Mechanism of nocturnal emergence from the nest in green turtle hatchlings. Nature 214:317. doi:10.1038/214317a0 CrossRefGoogle Scholar
  8. Carr A, Hirth H (1961) Social facilitation in green turtle siblings. Anim Behav 9:68–70. doi:10.1016/0003-3472(61)90051-3 CrossRefGoogle Scholar
  9. Caut S, Guirlet E, Jouquet P, Girondot M (2006) Influence of nest location and yolkless eggs on the hatching success of leatherback turtle clutches in French Guiana. Can J Zool 84:908–915. doi:10.1139/Z06-063 CrossRefGoogle Scholar
  10. Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137. doi:10.1086/400074 PubMedCrossRefGoogle Scholar
  11. Cristol DA (1995) Early arrival, initiation of nesting, and social status: an experimental study of breeding female red-winged blackbirds. Behav Ecol 6:87–93CrossRefGoogle Scholar
  12. Davenport J (1997) Temperature and the life-history strategies of sea turtles. J Therm Biol 22:479–488. doi:10.1016/S0306-4565(97)00066-1 CrossRefGoogle Scholar
  13. Drake DL, Spotila JR (2002) Thermal tolerances and the timing of sea turtle hatchling emergence. J Therm Biol 27:71–81. doi:10.1016/S0306-4565(01)00017-1 CrossRefGoogle Scholar
  14. Eckert KL (1987) Environmental unpredictability and leatherback sea turtle (Dermochelys coriacea) nest loss. Herpetologica 43:315–323Google Scholar
  15. Fowler LE (1979) Hatching success and nest predation in the green sea turtle, chelonian mydas, at Tortuguero, Costa Rica. Ecology 60:946–955CrossRefGoogle Scholar
  16. Georges JY, Billes A, Ferraroli S, Fossette S, Fretey J, Grémillet D, Le Maho Y, Myers AE, Tanaka H, Hays GC (2007) Meta-analysis of movements in Atlantic leatherback turtles during nesting season: conservation implications. Mar Ecol Prog Ser 338:225–232CrossRefGoogle Scholar
  17. Girondot M, Godfrey MH, Ponge L, Rivalan P (2007) Modeling approaches to quantify leatherback nesting trends in French Guiana and Suriname. Chelonian Conserv Biol 6:37–46CrossRefGoogle Scholar
  18. Hewavishenthi S, Parmenter CJ (2000) Hydric environment and sex determination in the flatback turtle (Natator depressus Garman) (Chelonia: Cheloniidae). Aust J Zool 48:653–659CrossRefGoogle Scholar
  19. Hewavishenthi S, Parmenter CJ (2002) Incubation environment and nest success of the flatback turtle (Natator depressus) from a natural nesting beach. Copeia 2002:302–312CrossRefGoogle Scholar
  20. Houghton JDR, Myers AE, Lloyd C, King RS, Isaacs C, Hays GC (2007) Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: ecological implications for a species displaying temperature sex determination. J Exp Mar Biol Ecol 345:71–77CrossRefGoogle Scholar
  21. Ji X, Qiu QB, Diong CH (2002) Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae). J Exp Zool 292:649–659. doi:10.1002/jez.10101 PubMedCrossRefGoogle Scholar
  22. Kraemer JE, Bell B (1980) Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (caretta caretta) on the Georgia coast. Herpetologica 36:72–77Google Scholar
  23. Leslie AJ, Penick DN, Spotila JR, Paladino FV (1996) Leatherback turtle, Dermochelys coriacea, nesting and nest success at Tortuguero, Costa Rica, in 1990–1991. Chelonian Conserv Biol 2:159–168Google Scholar
  24. Lin ZH, Ji X, Luo LG, Ma XM (2005) Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake, Deinagkistrodon acutus (Viperidae). J Therm Biol 30:289–297. doi:10.1016/j.jtherbio.2005.01.002 CrossRefGoogle Scholar
  25. López-Castro MC, Carmona R, Nichols WJ (2004) Nesting characteristics of the olive ridley turtle (Lepidochelys olivacea) in Cabo Pulmo, southern Baja California. Mar Biol 145:811–820. doi:10.1007/s00227-004-1359-x Google Scholar
  26. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American Redstarts Setophaga ruticilla. J Avian Biol 27:164–170CrossRefGoogle Scholar
  27. Matsuzawa Y, Sato K, Sakamoto W, Bjorndal KA (2002) Seasonal fluctuations in sand temperature: effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Mar Biol 140:639–646. doi:10.1007/s00227-001-0724-2 CrossRefGoogle Scholar
  28. McGehee MA (1990) Effects of moisture on eggs and hatchlings of loggerhead sea turtles (Caretta caretta). Herpetologica 446:251–258Google Scholar
  29. Miller JD (1997) Reproduction in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 51–81Google Scholar
  30. Miller JD (1999) Determining clutch size and hatching success. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication No. 4, pp 124–129Google Scholar
  31. Møller AP (1994) Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol 35:115–122CrossRefGoogle Scholar
  32. Morreale SJ, Ruiz GJ, Spotila JR, Standora EA (1982) Temperature-dependent sex determination: current practices threaten conservation of sea turtles. Science 216:1245–1247PubMedCrossRefGoogle Scholar
  33. Mortimer JA (1990) The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia 1990:802–817CrossRefGoogle Scholar
  34. Murphy GI (1968) Pattern in life history and the environment. Am Nat 927:391–403CrossRefGoogle Scholar
  35. Norris DR, Marra PP, Kyser TK, Sherry TW, Tatcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64. doi:10.1098/rspb.2003.2569 CrossRefGoogle Scholar
  36. Packard GC, Packard MJ, Miller K, Boardman TJ (1987) Influence of moisture, temperature and substrate on snapping turtle eggs and embryos. Ecology 68:983–993CrossRefGoogle Scholar
  37. Peters A, Verhoeven KJF, Strijbosch H (1994) Hatching and emergence in the Turkish Mediterranean loggerhead turtle, Caretta caretta: natural causes for egg and hatchling failure. Herpetologica 50:369–373Google Scholar
  38. Phillott AD, Parmenter CJ (2001) The distribution of failed eggs and the appearance of fungi in artificial nests of green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles. Aust J Zool 49:713–718CrossRefGoogle Scholar
  39. Price T, Kirkpatrick M, Arnold SJ (1988) Directional selection and the evolution of breeding date in birds. Science 240:798–799PubMedCrossRefGoogle Scholar
  40. Reece SE, Broderick AC, Godley BJ, West SA (2002) The effects of incubation environment, sex and pedigree on the hatchling phenotype in a natural population of loggerhead turtles. Evol Ecol Res 4:737–748Google Scholar
  41. Reina RD, Mayor PA, Spotila JR, Piedra R, Paladino FV (2002) Nesting ecology of the leatherback turtle, Dermochelys coriacea, at Parque Nacional Marino Las Baulas, Costa Rica: 1988–1989 to 1999–2000. Copeia 2002:653–664CrossRefGoogle Scholar
  42. Saba VS, Santidrián Tomillo P, Reina RD, Spotila JR, Musick JA, Evans DA, Paladino FV (2007) The effect of the El niño southern oscillation on the reproductive frequency of eastern Pacific leatherback turtles. J Appl Ecol 44:395–404. doi:10.1111/j.1365-2664.2007.01276.x CrossRefGoogle Scholar
  43. Santidrián Tomillo P, Vélez E, Reina RD, Piedra R, Paladino FV, Spotila JR (2007) Reassessment of the leatherback turtles (Dermochelys coriacea) nesting population at Parque Nacional Marino Las Baulas, Costa Rica: effects of conservation efforts. Chelonian Conserv Biol 6:54–62CrossRefGoogle Scholar
  44. Spotila JR, Beumer RJ (1970) The breeding habits of the ringed salamander, Ambystoma annulatum (Cope), in NorthWestern Arkansas. Am Midl Nat 84:77–89CrossRefGoogle Scholar
  45. Spotila JR, Zimmerman LC, Binckley CA, Grumbles JS, Rostal DC, List A, Beyer EC, Phillips KM, Kemp SJ (1994) Effects of incubation conditions on sex determination, hatching success and growth of hatchling desert tortoises, Gopherus agassizii. Herpetol Monogr 8:103–116CrossRefGoogle Scholar
  46. Spotila JR, Reina RD, Steyermark AC, Plotkin PT, Paladino FV (2000) Pacific leatherback turtles face extinction. Nature 405:529–530PubMedCrossRefGoogle Scholar
  47. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268CrossRefGoogle Scholar
  48. Steyermark AC, Williams K, Spotila JR, Paladino FV, Rostal DC, Morreale SJ, Koberg MT, Arauz R (1996) Nesting leatherback turtles at Las Baulas National Park, Costa Rica. Chelonian Conserv Biol 2:173–183Google Scholar
  49. Turtle Expert Working Group (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Tech. Memo. NMFS-SEFSC-555Google Scholar
  50. Van Buskirk J, Crowder LB (1994) Life-history variation in marine turtles. Copeia 1994:66–81CrossRefGoogle Scholar
  51. Wallace BP, Sotherland PR, Spotila JR, Reina RD, Franks BF, Paladino FV (2004) Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea. Physiol Biochem Zool 77:423–432PubMedCrossRefGoogle Scholar
  52. Wallace BP, Sotherland PR, Santidrián Tomillo P, Reina RD, Spotila JR, Paladino FV (2007) Maternal investment in reproduction and its consequences in leatherback turtles. Oecologica 152:37–47. doi:10.1007/s00442-006-0641-7 CrossRefGoogle Scholar
  53. Yntema CL, Mrosovsky N (1979) Incubation temperature and sex ratio in hatchling loggerhead turtles: a preliminary report. Mar Turt Newsl 11:9–10Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pilar Santidrián Tomillo
    • 1
  • Jack S. Suss
    • 1
  • Bryan P. Wallace
    • 2
    • 4
  • Kimberly D. Magrini
    • 1
  • Gabriela Blanco
    • 1
  • Frank V. Paladino
    • 3
  • James R. Spotila
    • 1
  1. 1.Department of BiologyDrexel UniversityPhiladelphiaUSA
  2. 2.Nicholas School of the Environment and Earth SciencesDuke University Marine LaboratoryBeaufortUSA
  3. 3.Department of BiologyIndiana-Purdue UniversityFort WayneUSA
  4. 4.Center for Applied Biodiversity ScienceConservation InternationalArlingtonUSA

Personalised recommendations