Advertisement

Marine Biology

, Volume 156, Issue 8, pp 1733–1737 | Cite as

Genetic evidence fails to discriminate between Macroramphosus gracilis Lowe 1839 and Macroramphosusscolopax Linnaeus 1758 in Portuguese waters

  • Joana Isabel Robalo
  • C. Sousa-Santos
  • H. Cabral
  • R. Castilho
  • V. C. Almada
Short Communication

Abstract

Fish belonging to the genus Macroramphosus are distributed throughout the Atlantic, Indian and Pacific oceans. Some authors consider this genus monotypic, Macroramphosus scolopax being the only valid species. Other authors consider (based on several morphological and ecological characters) that another species (Macroramphosus gracilis) exists and occurs frequently in sympatry with the first one. Intermediate forms are also reported in literature. In this paper, using the mitochondrial control region and the nuclear first S7 intron markers, we failed to find genetic differences between individuals considered to belong to both species as well as the intermediate forms. Our results suggest that in the northeastern Atlantic, Macroramphosus is represented by a single species, M. scolopax, with different morphotypes interbreeding in the sampling areas.

Keywords

Control Region Maximum Parsimony Mitochondrial Control Region Haplotype Group Control Region Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We appreciate the skilful technical assistance provided by S. Chenu and G.F Silva. This study was funded by the Pluriannual Program (FCT, UI&D 331/94-ISPA and CCMAR, partially FEDER funded). C. Sousa-Santos was also funded by a postdoctoral grant, SFRH/BPD/29774/2007.

References

  1. Assis CA (1992) On the systematics of Macrorhamphosus scolopax (Linnaeus, 1758) and Macrorhamphosus gracilis (Lowe, 1839). I. A preliminary biometrical approach. Bol Soc Port Cienc Nat (2nd Sér.) 25:5–19Google Scholar
  2. Bilecenoglu M (2006) Status of the genus Macroramphosus (Syngnathiformes:Centriscidae) in the eastern Mediterranean Sea. Zootaxa 1273:55–64Google Scholar
  3. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1247–1263. doi: https://doi.org/10.1046/j.1365-294x.1998.00406.x CrossRefGoogle Scholar
  4. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi: https://doi.org/10.1046/j.1365-294x.2000.01020.x CrossRefGoogle Scholar
  5. Domingues VS, Santos RS, Brito A, Alexandrou M, Almada VC (2007) Mitochondrial and nuclear markers reveal isolation by distance and effects of Pleistocene glaciations in the northeastern Atlantic and Mediterranean populations of the white seabream (Diplodus sargus, L.). J Exp Mar Biol Ecol 346:102–113. doi: https://doi.org/10.1016/j.jembe.2007.03.002 CrossRefGoogle Scholar
  6. Ehrich S (1976) Zur Taxonomie, Ökologie und Wachstum von Macroramphosus scolopax (Linnaeus, 1758) (Pisces, Syngnathiformes) aus dem subtropischen. Ber Deut Wiss Komm 24:251–266Google Scholar
  7. Ehrich S (1986) Macroramphosidae. In: Whitehead P, Bauchot M, Hureau J, Nielsen J, Tortonese E (eds) Fishes of the northeastern Atlantic and the Mediterranean (FNAM), vol 2. UNESCO, Paris, p 627Google Scholar
  8. Excoffier L, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  9. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi: https://doi.org/10.2307/2408678 CrossRefGoogle Scholar
  11. Lopes M, Murta AG, Cabral HN (2006) Discrimination of snipefish Macroramphosus species and boarfish Capros aper morphotypes through multivariate analysis of body shape. Helgol Mar Res 60:18–24. doi: https://doi.org/10.1007/s10152-005-0010-7 CrossRefGoogle Scholar
  12. Marques V, Chaves C, Morais A, Cardador F, Stratoudakis Y (2005) Distribution and abundance of snipefish (Macroramphosus spp.) of Portugal (1998–2003). Sci Mar 69:563–576CrossRefGoogle Scholar
  13. Matthiessen B, Fock H, von Westernhagen H (2003) Evidence for two sympatric species of snipefishes Macroramphosus spp. (Syngnathiformes, Centriscidae) on Great Meteor Seamount. Helgol Mar Res 57:63–72Google Scholar
  14. McPhail JD (1994) Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of southwestern British Columbia. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford Science Publications, Oxford, pp 399–437Google Scholar
  15. Miyazaki E, Sasaki K, Mitani T, Ishida M, Uehara S (2004) The occurrence of two species of Macroramphosus (Gasterosteiformes:Macroramphosidae) in Japan: morphological and ecological observations on larvae, juveniles, and adults. Ichthyol Res 51:256–262. doi: https://doi.org/10.1007/s10228-004-0227-5 CrossRefGoogle Scholar
  16. Mohr E (1937) Revision der centriscidae (Acanthopterygii, Centrisciformes). Dana Report 13:1–69Google Scholar
  17. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New YorkGoogle Scholar
  18. Oliveira RF, Almada VC, Gil MF (1993) The reproductive behavior of the longspine snipefish Macrorhamphosus scolopax (Syngnathiformes, Macrorhamphosidae). Environ Biol Fishes 36:337–343. doi: https://doi.org/10.1007/BF00012410 CrossRefGoogle Scholar
  19. Østbye K, NÆsje TF, Bernatchez L, Sandlund OT, Hindar K (2005) Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. J Evol Biol 18:683–702. doi: https://doi.org/10.1111/j.1420-9101.2004.00844.x CrossRefGoogle Scholar
  20. Ostellari L, Bargelloni L, Penzo E, Patarnello P, Patarnello T (1996) Optimization of single-strand conformation polymorphism and sequence analysis of the mitochondrial control region in Pagellus bogaraveo (Sparidae, Teleostei): rationalized tools in fish population biology. Anim Genet 27:423–427CrossRefGoogle Scholar
  21. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution (v.3.6). Bioinformatics 14:817–818. doi: https://doi.org/10.1093/bioinformatics/14.9.817 CrossRefGoogle Scholar
  22. Quéro JC, Hureau JC, Karrer C, Post A, Saldanha L (eds) (1990) Clofeta I-III, checklist of the fishes of the eastern tropical Atlantic. Junta Nacional de Investigação Cientifica e Tecnológica, LisboaGoogle Scholar
  23. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods) version 4.0. Sinauer Associated, Sunderland, MAGoogle Scholar
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi: https://doi.org/10.1093/nar/25.24.4876 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Joana Isabel Robalo
    • 1
  • C. Sousa-Santos
    • 1
  • H. Cabral
    • 2
  • R. Castilho
    • 3
  • V. C. Almada
    • 1
  1. 1.Unidade de Investigação em Eco-Etologia, Instituto Superior de Psicologia AplicadaLisbonPortugal
  2. 2.Instituto de Oceanografia, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  3. 3.Centro de Ciências do Mar do AlgarveUniversidade do AlgarveFaroPortugal

Personalised recommendations