Marine Biology

, Volume 156, Issue 6, pp 1335–1346 | Cite as

Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha)

Original Paper

Abstract

The phylum Gastrotricha includes about 750 species of meiobenthic marine and freshwater species that are often widely distributed. The microscopic size, short life cycle, low motility of adults, and the absence of larval stages normally required for dispersal raise doubts about the putative cosmopolitan distribution of many of gastrotrich species. The phenomenon of cosmopolitanism is acknowledged for all major meiobenthic taxa (“the meiofauna paradox”) and can be explained, at least in part, with the existence of sibling species, so far identified primarily by molecular analysis. In this paper, we report the discovery of sibling species in the marine chaetonotidan Xenotrichula intermedia using confocal laser scanning microscopy (CLSM). A total of 40 specimens collected from two geographically separate populations, the Mediterranean (Adriatic Sea) and the Arabian Gulf (Kuwait), were investigated. Fifteen specimens of each population were studied in vivo with a contrast interference microscope (DIC) in order to obtain the main morphometric parameters; ten other animals (five in each population) were fixed and marked with fluorescent phalloidin for the observation of their muscular systems under CLSM. The metrics and meristic data of the two populations fall within the range of measures recognized for the species. Pairwise comparisons (t-test) in general did not reveal statistically significant differences between the traits of specimens belonging to the two populations; moreover, multivariate analyses (cluster- and MDS analysis) were unable to separate clearly the Mediterranean from the Arabian specimens. In contrast, an examination of their muscular systems revealed clear dissimilarities between the two geographic groups. In particular, while the Italian specimens possessed incomplete circular bands and dorsoventrally orientated muscles that are partially inserted into the basal lamina of the cuticle, in both splanchnic- and somatic positions, their Arabian counterparts showed partial dorsoventral bands and complete circular muscles that surround the entire body of the animal in the same corresponding positions. Additional differences in the position of helicoidal bands (present in a more anterior location in the Italian specimens) are noted between Mediterranean and Arabian specimens. Since the investigated animals share a similar interstitial habitat, a working hypothesis connects the differences in the musculature to possible differences in the reproductive modality of specimens between the two populations.

References

  1. Baker JM, Giribet G (2007) A molecular phylogenetic approach to the phylum Cycliophora provides further evidence for cryptic speciation in Symbion americanus. Zool Scr 36:353–359. doi:10.1111/j.1463-6409.2006.00288.x CrossRefGoogle Scholar
  2. Baker JM, Funch P, Giribet G (2007) Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Mar Biol (Berl) 151:2183–2193. doi:10.1007/s00227-007-0654-8 CrossRefGoogle Scholar
  3. Casu M, Curini-Galletti M (2004) Sibling species in interstitial flatworms: a case study using Monocelis lineata (Proseriata: Monocelididae). Mar Biol (Berl) 145:669–679Google Scholar
  4. Casu M, Curini-Galletti M (2006) Genetic evidence for the existence of cryptic species in the mesopsammic flatworm Pseudomonocelis ophiocephala (Rhabditophora: Proseriata). Biol J Linn Soc Lond 87:553–576. doi:10.1111/j.1095-8312.2006.00588.x CrossRefGoogle Scholar
  5. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614 PubMedCrossRefGoogle Scholar
  6. Evans WA (1994) Morphological variability in warm-temperate and subtropical populations of Macrodasys (Gastrotricha: Macrodasyida: Macrodasyidae) with description of seven new species. Proc Biol Soc Wash 107:239–255Google Scholar
  7. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54:777–784. doi:10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2 CrossRefGoogle Scholar
  8. Gerlach SA (1953) Gastrotrichen aus dem Kuestengrundwasser des Mittelmeeres. Zool Anz 150:203–211Google Scholar
  9. Gerlach SA (1977) Means of meiofauna dispersal. In: Sterrer W, Ax P (eds) The meiofauna species in time and space, vol 61. Mikrofauna Meeresboden, pp 89–103Google Scholar
  10. Giere O (1993) Meiobenthology, the microscopic fauna in aquatic sediments. Springer, BerlinGoogle Scholar
  11. Gomez S, Fleeger JW, Rocha OA, Foltz D (2004) Four new species of Cletocamptus Schmankewitsch, 1875, closely related to Cletocamptus deitersi (Richard, 1897) (Copepoda: Harpacticoida). J Nat Hist 38:2669–2732. doi:10.1080/0022293031000156240 CrossRefGoogle Scholar
  12. Hochberg R, Gurbuz OA (2007) Functional morphology of somatic muscles and anterolateral setae in Filinia novaezealandiae Shiel and Sanoamuang, 1993 (Rotifera). Zool Anz 246:11–22. doi:10.1016/j.jcz.2006.10.002 CrossRefGoogle Scholar
  13. Hochberg R, Litvaitis MK (2001a) A muscular double helix in Gastrotricha. Zool Anz 240:61–68. doi:10.1078/0044-5231-00006 CrossRefGoogle Scholar
  14. Hochberg R, Litvaitis MK (2001b) The musculature of Draculiciteria tesselata: implications for the evolution of dorsoventral muscles in Gastrotricha. Hydrobiologia 452:155–161. doi:10.1023/A:1011940430507 CrossRefGoogle Scholar
  15. Hochberg R, Litvaitis MK (2003) Organisation of muscles in Chaetonotida Paucitubulatina. Meiofauna Mar 12:47–58Google Scholar
  16. Hummon WD (1975) Introgressive hybridization between two intertidal species of Tetranchyrderma (Gastrotricha, Thaumastodermatidae) with the description of a new species. Mikrofauna Meeresboden 61:113–136Google Scholar
  17. Hummon WD (1994) Trans and Cis-Atlantic distribution of three marine heterotardigrades. Trans Am Microsc Soc 113:333–342. doi:10.2307/3226627 CrossRefGoogle Scholar
  18. Hummon WD (2007) Global database for marine gastrotricha. http://hummon-nas.biosci.ohiou.edu/
  19. Hummon WD, Todaro MA (2007) A new species of Xenotrichulidae (Gastrotricha) from southern and southeastern USA. Cah Biol Mar 48:297–302Google Scholar
  20. Huys R (1992) The amphiatlantic distribution of Leptastacus macronyx (T. Scott, 1892) (Copepoda: Harpacticoida): a paradigm of taxonomy confusion; and a cladistic approach to the classification of the Leptasticidae Lang, 1948. Mede K Acad Wet Lett Sch Kunst Belg 54:21–196Google Scholar
  21. Kieneke A, Arbizu PM, Riemann O (2008) Body musculature of Stylochaeta scirtetica Brunson, 1950 and Dasydytes (Setodytes) tongiorgii (Balsamo, 1982) (Gastrotricha : Dasydytidae): a functional approach. Zool Anz 247:147–158. doi:10.1016/j.jcz.2007.11.001 CrossRefGoogle Scholar
  22. Leasi F, Ricci C (2008) Musculature in two bdelloid rotifers: Macrotrachela quadricornifera and Adineta ricciae. Organisation and locomotion in a functional and evolutionary perspective. Proceedings of III Congress of Italian Society for Evolutionary Biology, ItalyGoogle Scholar
  23. Leasi F, Todaro MA (2008) The Muscular system of Musellifer delamarei (Reanud-Mornant, 1968) and other chaetonotidans with implication for the phylogeny and systematisation of the Paucitubulatina (Gastrotricha). Biol J Linn Soc Lond 94:379–398. doi:10.1111/j.1095-8312.2008.00974.x CrossRefGoogle Scholar
  24. Leasi F, Rothe BH, Schmidt-Rhaesa A, Todaro MA (2006) The musculature of three species of gastrotrichs surveyed with confocal laser scanning microscopy (CLSM). Acta Zool 87:171–180. doi:10.1111/j.1463-6395.2006.00230.x CrossRefGoogle Scholar
  25. Levi C (1950) Contribution a l’étude des gastrotriches de la region de Roscoff. Arch Zool Exp Gen 87:31–42Google Scholar
  26. Luporini P, Magagnini G, Tongiorgi P (1973) Chaetonotoid gastrotrichs of the Tuscan Coast. Boll Zool 40:31–40Google Scholar
  27. Maltagliati F, Peru AP, Casu M, Rossi F, Lardicci C, Curini Galletti M, Castelli A (2000) Is Syllis gracilis Grube (Polychaeta: Syllidae) a species complex? An allozyme perspective. Mar Biol (Berl) 136:871–879. doi:10.1007/s002270000288 CrossRefGoogle Scholar
  28. Priyalakshmi G, Menon NR, Todaro MA (2007) A new species of Pseudostomella (Gastrotricha:Macrodasyida:Thaumastodermatidae) from a sandy beach of Kerala, India. Zootaxa 1616:61–68Google Scholar
  29. Rao GC, Ganapati PN (1968) Some new interstitial gastrotrichs from the beach sands of Waltair coast. Proc Indiana Acad Sci 67B:35–53Google Scholar
  30. Rocha-Olivarez A, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102Google Scholar
  31. Rothe BH, Schmidt-Rhaesa A (2008) Variation in the nervous system in three species of the genus Turbanella (Gastrotricha, Macrodasyida) Meiofauna Mar 16:175-184Google Scholar
  32. Ruchel J, Müller MCM (2007) F-actin framework in Spirorbis cf. spirorbis (Annelida: Serpulidae): phalloidin staining investigated and reconstructed by CLSM. Inv Biol 126:173–182. doi:10.1111/j.1744-7410.2007.00087.x CrossRefGoogle Scholar
  33. Ruppert EE (1979) Morphology and systematics of the Xenotrichulidae (Gastrotricha, Chaetonotida). Mikrofauna Meeresboden 76:1–56Google Scholar
  34. Ruppert EE (1991) Gastrotricha (Aschelminthes). In: Harrison F, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4. Wiley-Liss Press, Washington DC, pp 41–109Google Scholar
  35. Sterrer W (1973) Plate tectonics as a mechanism for dispersal and speciation in interstitial sand fauna. Neth J Sea Res 7:200–222. doi:10.1016/0077-7579(73)90045-8 CrossRefGoogle Scholar
  36. Suatoni E, Vicario S, Rice S, Snell T, Caccone A (2006) An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer—Brachionus plicatilis. Mol Phylogenet Evol 41:86–98PubMedCrossRefGoogle Scholar
  37. Todaro MA, Hummon WD (2008) An overview and a dichotomous key to genera of the phylum Gastrotricha. Meiofauna Mar 16:3–20Google Scholar
  38. Todaro MA, Rocha CEF (2004) Diversity and distribution of marine Gastrotricha along the northern beaches of the state of Sao Paulo (Brazil), with description of a new species of Macrodasys (Macrodasyida, Macrodasyidae). J Nat Hist 38:1605–1634. doi:10.1080/0022293031000156169 CrossRefGoogle Scholar
  39. Todaro MA, Fleeger JW, Hu YP, Hrincevich AW, Foltz DW (1996) Are meiofauna species cosmopolitan? Morphological and molecular analysis of Xenotrichula intermedia (Gastrotricha: Chaetonotida). Mar Biol (Berl) 125:735–742. doi:10.1007/BF00349256 CrossRefGoogle Scholar
  40. Todaro MA, Guidi L, Leasi F, Tongiorgi P (2006a) Morphology of Xenodasys (Gastrotricha): the first species from the Mediterranean Sea and the establishment of Chordodasiopsis gen. nov. and Xenodasyidae fam. nov. J Mar Biol Assoc UK 86:1005–1015. doi:10.1017/S0025315406013981 CrossRefGoogle Scholar
  41. Todaro MA, Telford MJ, Lockyer AE, Littlewood DTJ (2006b) Interrelationships of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zool Scr 35:251–259. doi:10.1111/j.1463-6409.2006.00228.x CrossRefGoogle Scholar
  42. Todaro MA, Faraj MN, Al-Kady S, Dal Zotto M (2007) Marine Gastrotricha from the state of Kuwait (Arabian Gulf). Proceedings of XIII international meiofauna conference, BrazilGoogle Scholar
  43. Todaro MA, Dal Zotto M, Maiorova AS, Adrianov AV (2009) A new species of Aspidiophorus (Gastrotricha, Chaetonotida) from the Russian Far East with a key to marine species of the genus. Mar Biol Res (in press). doi:10.1007/s10152-002-0114-2
  44. Westheide W, Schmidt H (2003) Cosmopolitan versus cryptic meiofaunal polychaete species. An approach to a molecular taxonomy. Helgol Mar Res 57:1–6Google Scholar
  45. Westheide W, Hass-Cordes E, Krabusch M, Müller MC (2003) Ctenodrilus serratus (Polychaeta: Ctenodrilidae) is a truly amphi-Atlantic meiofauna species—evidence from molecular data. Mar Biol (Berl) 142:637–642Google Scholar
  46. Zelinka C (1889) Die Gastrotrichen. Eine monographische Darstellung ihrer Anatomie, Biologie und Systematic. Z Wiss Zool Abt A 49:209–384Google Scholar
  47. Zrzavý J (2003) Gastrotricha and metazoan phylogeny. Zool Scr 32:61–81. doi:10.1046/j.1463-6409.2003.00104.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MilanMilanItaly
  2. 2.Department of Animal BiologyUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations