Advertisement

Marine Biology

, Volume 156, Issue 5, pp 1083–1086 | Cite as

Crushing predation of the spiny star Marthasterias glacialis upon the sea urchin Paracentrotus lividus

  • P. Gianguzza
  • C. Bonaviri
  • P. Guidetti
Short Communication

Abstract

Literature data report that only fish predators are able to crush sea urchin tests in Mediterranean rocky reefs. This experimental study showed that the spiny star Marthasterias glacialis is able to break Paracentrotus lividus tests and that the breaking event is more likely to occur for small-sized sea urchins than for big ones. Our results show that the role of M. glacialis in regulating P. lividus population density can be important in specific locations. They may have important implications, moreover, for the use of tethering techniques aimed at identifying predator types of sea urchins.

Keywords

Break Test Paracentrotus Lividus Intact Test Temperate Rocky Reef Tether Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are indebted to Dr. F. Di Trapani for its indispensable help during field work. This study was funded by the M.A.T.T.M (Ministero dell’Ambiente Difesa del Territorio e del Mare) research project “Monitoraggio delle popolazioni di Paracentrotus lividus e Arbacia lixula ai fini della tutela della diversità biologica dell’AMP “Isola di Ustica”. Experiments described in this paper comply with Italian current laws.

References

  1. Behrens MD, Lafferty KD (2004) Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar Ecol Prog Ser 279:129–139. doi: https://doi.org/10.3354/meps279129 CrossRefGoogle Scholar
  2. Bonaviri C (2007) Distribuzione delle popolazioni di Paracentrotus lividus ed Arbacia lixula nell’infralitorale dell’Area Marina Protetta ‘‘Isola di Ustica’’ e loro influenza sulla comunita` bentonica. Ph.D Thesis, Universita` degli Studi di PalermoGoogle Scholar
  3. Boudouresque CF, Verlaque M (2001) Ecology of Paracentrotus lividus. In: Lawrence JM (ed) Edible sea urchins: biology and ecology. Elsevier, Amsterdam, pp 177–216CrossRefGoogle Scholar
  4. Buznikov GA, Podmarev VK (1975) Sea Urchins Strongylocentrotus dröbachiensis, S. nudus, and S. intermedius. Ob”ekty biologii razvitiya (objects of developmental biology). Nauka, Moscow, pp 188–216Google Scholar
  5. Dance C, Savy S (1987) Predation on Paracentrotus lividus by Martahsterias glacialis: an in situ experiment at Port-Cros (France Mediterranean). Posidonia News 1:35–41Google Scholar
  6. Fanelli G, Piraino S, Esposito L, Boero F (1999) Opposite role of sea urchins and starfishes in marine benthic communities. In: Candia Carnevali ND, Bonassoro F (eds) Echinoderm Research. Balkema, Rotterdam, pp 453–457Google Scholar
  7. Gianguzza P, Chiantore M, Bonaviri C, Cattaneo-Vietti R, Vielmini I, Riggio S (2006) The effects of recreational Paracentrotus lividus fishing on distribution patterns of sea urchins at Ustica Island MPA (Western Mediterranean, Italy). Fish Res 81:37–44. doi: https://doi.org/10.1016/j.fishres.2006.06.002 CrossRefGoogle Scholar
  8. Gianguzza P, Badalamenti F, Gianguzza F, Bonaviri C, Riggio S (2008) The operational sex ratio of the sea urchin Paracentrotus lividus populations: the case of the Mediterranean marine protected area of Ustica Island (Tyrrhenian Sea Italy) Mar Ecol 267 ISSN 0173–9565 (in press)Google Scholar
  9. Guidetti P (2004) Consumer of sea urchins (Paracentrotus lividus and Arbacia lixula) in shallow Mediterranean rocky reefs. Helgol Mar Res 58:110–116. doi: https://doi.org/10.1007/s10152-004-0176-4 CrossRefGoogle Scholar
  10. Guidetti P (2006) Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs. Ecol Appl 16:963–976. doi: https://doi.org/10.1890/1051-0761(2006)016[0963:MRRLPI]2.0.CO;2 CrossRefGoogle Scholar
  11. Guidetti P, Sala E (2007) Community-wide effects of marine reserves in the Mediterranean Sea. Mar Ecol Prog Ser 335:43–56. doi: https://doi.org/10.3354/meps335043 CrossRefGoogle Scholar
  12. Heck K, Valentine J (1995) Sea urchin herbivory: evidence for lung-lasting effects in subtropical seagrass meadows. J Exp Mar Biol Ecol 189:205–217. doi: https://doi.org/10.1016/0022-0981(95)00012-G CrossRefGoogle Scholar
  13. Hereu B (2006) Depletion of palatable algae by sea urchins and fish in a Mediterranean subtidal community. Mar Ecol Prog Ser 313:95–103. doi: https://doi.org/10.3354/meps313095 CrossRefGoogle Scholar
  14. Hereu B, Cabala M, Linares C, Sala E (2004) Temporal and spatial variability in settlement of the sea urchin Paracentrotus lividus in the NW Mediterranean. Mar Biol (Berl) 144:1011–1018. doi: https://doi.org/10.1007/s00227-003-1266-6 CrossRefGoogle Scholar
  15. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi: https://doi.org/10.1126/science.1059199 CrossRefGoogle Scholar
  16. La Mesa G, Vacchi M (1999) An analysis of the coastal fish assemblages of the Ustica Island Marine Reserve (Mediterranean Sea). Mar Ecol (Berl) 20:147–165. doi: https://doi.org/10.1046/j.1439-0485.1999.00067.x CrossRefGoogle Scholar
  17. McClanahan TR, Muthiga NA (1989) Patterns of predation on a sea urchin, Echinometra mathaei, on Kenyan coral reef. J Exp Mar Biol Ecol 126:77–94. doi: https://doi.org/10.1016/0022-0981(89)90125-1 CrossRefGoogle Scholar
  18. Pederson HG, Johnson CR (2006) Predation of the sea urchin Heliocidaris erythrogramma by rock lobster (Jasus edwardsii) in no-take marine reserves. J Exp Mar Biol Ecol 336:120–134. doi: https://doi.org/10.1016/j.jembe.2006.04.010 CrossRefGoogle Scholar
  19. Pinnegar JK, Polunin NVC, Francour P, Badalamenti F, Chemello R, Harmelin-Vivien M, Hereu B, Milazzo M, Zabala M, D’Anna G, Pipitone C (2000) Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected- area management. Environ Conserv 27:179–200. doi: https://doi.org/10.1017/S0376892900000205 CrossRefGoogle Scholar
  20. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University press, CambridgeCrossRefGoogle Scholar
  21. Rochelle DS, Romuald NL, Anson HH, Eggleston DB (2001) Density-dependent predation, habitat variation, and the persistence of marine bivalve prey. Ecology 82:2435–2451CrossRefGoogle Scholar
  22. Rochette R, Hamel JF, Himmelman JH (1994) Foraging strategy of the asteroid Leptasterias polaris: role of prey odors, current and feeding status. Mar Ecol Prog Ser 106:93–100. doi: https://doi.org/10.3354/meps106093 CrossRefGoogle Scholar
  23. Sala E (1997) Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean Sea. Mar Biol (Berl) 129:531–539. doi: https://doi.org/10.1007/s002270050194 CrossRefGoogle Scholar
  24. Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81. doi: https://doi.org/10.3354/meps140071 CrossRefGoogle Scholar
  25. Sala E, Boudouresque CF, Harmelin-Vivien M (1998) Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82:425–439. doi: https://doi.org/10.2307/3546364 CrossRefGoogle Scholar
  26. Savy S (1987) Les predateurs de Paracentrotus lividus (Echinodermata). GIS Posidonie publ., Marseille, pp 413–442Google Scholar
  27. Shears NT, Babcock RC (2002) Marine reserves demonstrate top-down control of community structure on temperate reef. Oecologia 132:131–142. doi: https://doi.org/10.1007/s00442-002-0920-x CrossRefGoogle Scholar
  28. Shears NT, Babcock RC (2003) Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Mar Ecol Prog Ser 246:1–16. doi: https://doi.org/10.3354/meps246001 CrossRefGoogle Scholar
  29. Steneck RS, Vavrinec J, Leland AV (2004) Accelerating trophic-level dysfunction in kelp forest ecosystems of the Western North Atlantic. Ecosystems 7:323–332. doi: https://doi.org/10.1007/s10021-004-0240-6 CrossRefGoogle Scholar
  30. Tegner MJ, Dayton PK (2000) Ecosystem effect of fishing in kelp forest communities. ICES J Mar Sci 57:579–589. doi: https://doi.org/10.1006/jmsc.2000.0715 CrossRefGoogle Scholar
  31. Tuya F, Boyra A, Sanchez-Jerez P, Barbera C, Haroun RJ (2004) Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Mar Ecol Prog Ser 278:157–169. doi: https://doi.org/10.3354/meps278157 CrossRefGoogle Scholar
  32. Underwood AJ (1997) Experiments in ecology: their logic design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  33. Verlaque M (1987) Relations entre Paracentrotus lividus (Lamarck) et le phytobenthos de Mediterranee occidentale. In: Boudoresque CF (ed) Colloque international sur Paracentrotus lividus et les oursins comestibles. GIS Posidonie Publications, Marseille, pp 5–36Google Scholar
  34. Wahle R, Steneck R (1992) Habitat restrictions in early benthic life: experiments on habitat selection and in situ predation with the American lobster. J Exp Mar Biol Ecol 157:91–114. doi: https://doi.org/10.1016/0022-0981(92)90077-N CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of EcologyUniversity of PalermoPalermoItaly
  2. 2.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly

Personalised recommendations