Advertisement

Marine Biology

, Volume 156, Issue 5, pp 927–933 | Cite as

Dietary effects on multi-element composition of European eel (Anguilla anguilla) otoliths

  • Lasse Marohn
  • Enno Prigge
  • Karsten Zumholz
  • Andreas Klügel
  • Heike Anders
  • Reinhold Hanel
Original Paper

Abstract

Otolith microchemistry is widely used as a tool to track individual migration pathways of diadromous fish under the assumption that the elemental composition of fish otoliths is directly influenced by the physicochemical properties of the surrounding water. Nevertheless, several endogenous factors are reported to affect element incorporation into fish otoliths and might lead to misinterpretations of migration studies. This study experimentally examined the influence of eight different diets on the microchemical composition of European eel (Anguilla anguilla) otoliths using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Seven natural prey types and one artificial diet were fed during 8 weeks in freshwater circuits. Results show for the first time that food has no significant influence on the incorporation of Na, Sr, Ba, Mg, Mn, Cu and Y into European eel otoliths. This indicates that the incorporation of elements usually chosen for migration studies is not affected by diet and that individual feeding behaviour of A. anguilla will not lead to any misinterpretation of migration pathways.

Keywords

Inductively Couple Plasma Mass Spectrometry Aragonite 86Sr Vaterite Laser Ablation Inductively Couple Plasma Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Andrea Frommel for otolith preparation and proof-reading and Silvana Hessler and Martin Kölling for ICP-AES analyses. We are also grateful to Michael Gruber and Ralf Traulsen from Kiel Aquarium for cooperation and advice. This study was funded by the German Federal Ministry of Consumer Protection, Food and Agriculture (BMELV) through the project “Habitat selection of the European eel” (04HS065).

References

  1. Arai T, Kotake A, Lokman PM, Mille MJ, Tsukamoto K (2004) Evidence of different habitat use by New Zealand freshwater eels Anguilla australis and A. dieffenbachii, as revealed by otolith microchemistry. Mar Ecol Prog Ser 266:213–225. doi: 10.3354/meps266213 CrossRefGoogle Scholar
  2. Buckel JA, Sharack BL, Zdanowicz VS (2004) Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. J Fish Biol 64:1469–1484. doi: 10.1111/j.0022-1112.2004.00393.x CrossRefGoogle Scholar
  3. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297. doi: 10.3354/meps188263 CrossRefGoogle Scholar
  4. Daverat F, Tomas J, Lahaye M, Palmer M, Elie P (2005) Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Mar Freshw Res 56:619–627. doi: 10.1071/MF04175 CrossRefGoogle Scholar
  5. Elfman M, Limburg KE, Kristianssona P, Malmqvista K, Pallona J (1999) Application of micro-PIXE to fish life history analyses: trace element analysis of otoliths. Nucl Instrum Methods Phys Res B 150(1–4):272–286. doi: 10.1016/S0168-583X(98)01006-4 CrossRefGoogle Scholar
  6. Farrell J, Campana SE (1996) Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comp Biochem Physiol 115A(2):103–109. doi: 10.1016/0300-9629(96)00015-1 CrossRefGoogle Scholar
  7. Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied for stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23:955–961. doi: 10.1039/b717706b CrossRefGoogle Scholar
  8. Gallahar NK, Kingsford MJ (1996) Factors influencing Sr/Ca ratios in otoliths of Girella elevata: an experimental investigation. J Fish Biol 48:174–186Google Scholar
  9. Hamer PA, Jenkins GP (2007) Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. J Fish Biol 71(4):1035–1055. doi: 10.1111/j.1095-8649.2007.01570.x CrossRefGoogle Scholar
  10. Hoff GR, Fuiman LA (1995) Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull Mar Sci 56(2):578–591Google Scholar
  11. Jessop BM, Shiao JC, Iizuka Y, Tzeng WN (2006) Migration of juvenile American eels Anguilla rostrata between freshwater and estuary, as revealed by otolith microchemistry. Mar Ecol Prog Ser 310:219–233. doi: 10.3354/meps310219 CrossRefGoogle Scholar
  12. Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57(11):2280–2292. doi: 10.1139/cjfas-57-11-2280 CrossRefGoogle Scholar
  13. Limburg KE (1995) Otolith strontium traces environmental history of subyearling American shad (Alosa sapidissima). Mar Ecol Prog Ser 119:25–35. doi: 10.3354/meps119025 CrossRefGoogle Scholar
  14. Limburg KE, Wickström H, Svedäng H, Elfman M, Kristiansson P (2003) Do stocked freshwater eels migrate? Evidence from the Baltic suggests “Yes”. Am Fish Soc Symp 33:275–284Google Scholar
  15. Lin SH, Chang CW, Iizuka Y, Tzeng WN (2007) Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. J Exp Mar Biol Ecol 341:254–263. doi: 10.1016/j.jembe.2006.10.025 CrossRefGoogle Scholar
  16. Mann RHK, Blackburn JH (1991) The biology of the eel Anguilla anguilla (L.) in an English chalk stream and interactions with juvenile trout Salmo trutta (L.) and salmon Salmo salar L. Hydrobiologia 218:65–76. doi: 10.1007/BF00006419 CrossRefGoogle Scholar
  17. Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65. doi: 10.1016/S0022-0981(01)00301-X CrossRefGoogle Scholar
  18. Payan P, De Pontual H, Boeuf G, Mayer-Gostan N (2004) Endolymph chemistry and otolith growth in fish. C R Palevol 3:535–547. doi: 10.1016/j.crpv.2004.07.013 CrossRefGoogle Scholar
  19. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CL, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x CrossRefGoogle Scholar
  20. Shiao JC, Lozys L, Iizuka Y, Tzeng WN (2006) Migratory patterns and contribution of stocking to the population of European eel in Lithuanian waters as indicated by otolith Sr:Ca ratios. J Fish Biol 69(3):749–769. doi: 10.1111/j.1095-8649.2006.01147.x CrossRefGoogle Scholar
  21. Strong MB, Neilson JD, Hunt JJ (1986) Aberrant crystallization of pollock (Pollachius virens) otoliths. Can J Fish Aquat Sci 43:1457–1463. doi: 10.1139/f86-180 CrossRefGoogle Scholar
  22. Tsukamoto K, Nakai I, Tesch WV (1998) Do all freshwater eels migrate? Nature 396:635–636. doi: 10.1038/25264 CrossRefGoogle Scholar
  23. Tzeng WN, Severin KP, Wickström H (1997) Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar Ecol Prog Ser 149:73–81. doi: 10.3354/meps149073 CrossRefGoogle Scholar
  24. Tzeng WN, Chang CW, Wang CH, Shiao JC, Iizuka Y, Yang Yj, You CF, Lozys L (2007) Misidentification of the migratory history of anguillid eels by Sr/Ca ratios of vaterite otoliths. Mar Ecol Prog Ser 348:285–295. doi: 10.3354/meps07022 CrossRefGoogle Scholar
  25. Umezawa A, Tsukamoto K (1991) Factors influencing otolith increment formation in Japanese eel, Anguilla japonica, elvers. J Fish Biol 39:211–223. doi: 10.1111/j.1095-8649.1991.tb04357.x CrossRefGoogle Scholar
  26. Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130. doi: 10.3354/meps311125 CrossRefGoogle Scholar
  27. Zumholz K, Hansteen TH, Klügel A, Piatkowski U (2006) Food effects on statolith composition of the common cuttlefish (Sepia officinalis). Mar Biol (Berl) 150:237–244. doi: 10.1007/s00227-006-0342-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lasse Marohn
    • 1
  • Enno Prigge
    • 1
  • Karsten Zumholz
    • 1
    • 3
  • Andreas Klügel
    • 2
  • Heike Anders
    • 2
  • Reinhold Hanel
    • 1
    • 4
  1. 1.Leibniz-Institute of Marine Sciences, IFM-GEOMARKielGermany
  2. 2.Universität BremenBremenGermany
  3. 3.Landwirtschaftsschule Rendsburg FischereischuleOsterrönfeldGermany
  4. 4.Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Fishery EcologyHamburgGermany

Personalised recommendations