Advertisement

Marine Biology

, Volume 156, Issue 4, pp 797–809 | Cite as

Metabolic and molecular stress responses of the gilthead seabream Sparus aurata during long-term exposure to increasing temperatures

  • Konstantinos Feidantsis
  • Hans O. Pörtner
  • Antigoni Lazou
  • Basile Kostoglou
  • Basile Michaelidis
Original Paper

Abstract

Tolerance to a changing climate regime and persistence in the natural environment depends on the limited capacity to acclimate to changing temperatures. The present study aimed to identify and characterize thermal limits of the Mediterranean fish Sparus aurata as well as the processes providing heat protection during exposure to high temperatures. Processes studied included heat shock protein expression, protein kinase activity and metabolic adjustments. Molecular responses were addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases, p38 mitogen-activated protein kinase (p38 MAPK) and cJun-N-terminal kinases (JNKs). Thermal impacts on metabolic capacities were assessed by studying the maximum activities of citrate synthase (CS), malate dehydrogenase (MDH) and 3-hydroxyacyl CoA dehydrogenase (HOAD) as well as pyruvate kinase (PK) and lactate dehydrogenase (L-LDH). The expression of Hsp70 and hsp90 was activated when the fish were exposed to temperatures beyond 20°C. Increased phosphorylation of p38 MAPK and JNKs indicated the parallel activation of MAPK signaling cascades and the potential involvement of MAPKs in the induction of Hsp genes. Exposure to extreme temperatures beyond 24°C caused an increase in the enzymatic activity of PK and LDH indicating an enhanced glycolytic potential.

Keywords

Pyruvate Kinase Malate Dehydrogenase White Muscle Thermal Tolerance Pyruvate Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anestis A, Lazou A, Pörtner HO, Michaelidis B (2007) Behavioral, metabolic and molecular stress responses of marine bivalve Mytillus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:R911–R921. doi: 10.1152/ajpregu.00124.2007 PubMedGoogle Scholar
  2. Barron MG, Tarr BD, Hayton WL (1987) Temperature dependence of cardiac-output and regional blood-flow in rainbow-trout, Salmo-Gairdneri Richardson. J Fish Biol 31:735–744. doi: 10.1111/j.1095-8649.1987.tb05276.x CrossRefGoogle Scholar
  3. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183. doi: 10.1016/S0378-1119(02)00687-X PubMedCrossRefGoogle Scholar
  4. Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662. doi: 10.1038/347660a0 CrossRefGoogle Scholar
  5. Cara JB, Aluru N, Moyano FJ, Vijayan MM (2005) Food deprivation induces hsp70 and hsp90 protein expression in larval gilthead sea bream and rainbow trout. Comp Biochem Physiol B 142:426–431PubMedGoogle Scholar
  6. Currie S, Tufts B (1997) Synthesis of stress protein 70 in rainbow trout (Onkorhynchus mykiss) red blood cells. J Exp Biol 200:607–614PubMedGoogle Scholar
  7. Damianides P, Chintiroglou CC (2000) Structure and functions of polychaetofauna living in Mytilus galloprovincialis assemblages in Thermaikos Gulf (north Aegean sea). Oceanol Acta 23:323–337. doi: 10.1016/S0399-1784(00)00127-4 CrossRefGoogle Scholar
  8. Driedzic RW, Almeida-Val VMF (1996) Enzymes of cardiac energy metabolism in Amazonian teleosts and fresh-water stingray (Potamotrygon hystrix). J Exp Zool 274:327–333 doi: 10.1002/(SICI)1097-010X(19960415)274:6<327::AID-JEZ1>3.0.CO;2-Q CrossRefGoogle Scholar
  9. Fukasawa M, Freeland H, Perkin R, Watanable T, Uchida H, Nishina A (2004) Bottom water warming in the north Pacific Ocean. Nature 427:825–827. doi: 10.1038/nature02337 PubMedCrossRefGoogle Scholar
  10. Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61Google Scholar
  11. Hashimoto H, Matsuo Y, Yokohama Y, Toyohara H, Sakaguchi M (1997) Structure and expression of carp mitogen-activated protein kinases homologous to mammalian JNK/SAPK. J Biochem 122(2):381–386PubMedGoogle Scholar
  12. Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006a) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J Exp Biol 209:353–363. doi: 10.1242/jeb.01977 PubMedCrossRefGoogle Scholar
  13. Heise K, Puntarulo S, Nikinmaa M, Lucassen M, Pörtner HO, Abele D (2006b) Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp Biochem Physiol 143A:494–503Google Scholar
  14. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, OxfordGoogle Scholar
  15. Hofmann EG (2005) Patterns of hsp gene expression in ectothermic marine organisms on small to large biogeographic scales. Integr Comp Biol 45:247–255. doi: 10.1093/icb/45.2.247 CrossRefGoogle Scholar
  16. International Panel on Climate Change (IPCC) Climate Change (2001) Impacts, adaptations and vulnerability, 2001. Cambridge University Press, New YorkGoogle Scholar
  17. Iwama KG, Thomas TP, Forsyth BR, Vijayan MM (1998) Heat shock expression in fish. Rev Fish Biol Fish 8:35–56. doi: 10.1023/A:1008812500650 CrossRefGoogle Scholar
  18. Iwama GK, Vijayan MM, Forsyth RB, Ackerman PA (1999) Heat shock proteins and physiological stress in fish. Am Zool 39:901–909Google Scholar
  19. Iwama KG, Afonso OBL, Todgham A, Ackerman P, Nakano K (2003) Are hsp’s suitable for indicating stressed states in fish? J Exp Biol 207:15–19. doi: 10.1242/jeb.00707 CrossRefGoogle Scholar
  20. Kleckner NW, Sidell BD (1985) Comparison of maximal activities of enzymes from tissues of thermally acclimated and naturally acclimatized chain Pickerel (Esox-Niger). Physiol Zool 58(1):18–28Google Scholar
  21. Kultz D (1998) Phylogenetic and functional classification of mitogrn- and stress-activated protein kinases. J Mol Evol 46:571–588. doi: 10.1007/PL00006338 PubMedCrossRefGoogle Scholar
  22. Kultz D, Avila K (2001) Mitogen activated protein kinases are in vivo transducers of osmosensory signals in fish gill cells. Comp Biochem Physiol B 129:821–829. doi: 10.1016/S1096-4959(01)00395-5 PubMedCrossRefGoogle Scholar
  23. Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229. doi: 10.1126/science.287.5461.2225 CrossRefGoogle Scholar
  24. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New YorkGoogle Scholar
  25. Mark FC, Bock C, Pörtner HO (2002) Oxygen limited thermal tolerance in Antarctic fish investigated by magnetic resonance imaging (MRI) and spectroscopy (31P-MRS). Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262PubMedGoogle Scholar
  26. McGinn NA (2002) Fisheries in a changing climate. American Fisheries Society Sysmposium 32, Bestheda, MD, 295 pGoogle Scholar
  27. Moon TW, Mommsen TP (1987) Enzymes of intermediary metabolism in tissues of little skate (Raja erinacea). J Exp Zool 244:9–15. doi: 10.1002/jez.1402440103 CrossRefGoogle Scholar
  28. Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146. doi: 10.1007/s001140100216 PubMedCrossRefGoogle Scholar
  29. Pörtner HO (2002a) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761Google Scholar
  30. Pörtner HO (2002b) Physiological basis of temperature dependent biogeography: tradeoffs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230PubMedGoogle Scholar
  31. Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi: 10.1126/science.1135471 PubMedCrossRefGoogle Scholar
  32. Pörtner HO, Reipschläger A, Heisler N (1998) Metabolism and acid-base regulation in Sipunculus nudus as a function of ambient carbon dioxide. J Exp Biol 201:43–55PubMedGoogle Scholar
  33. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history? J Oceanogr 60:705–718. doi: 10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  34. Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia and increases in CO2 on marine animals: from earth history to global change. J Geophys Res Oceans 110:C09S10. doi: 10.1029/2004JC002561 CrossRefGoogle Scholar
  35. Quay P (2002) Ups and downs of CO2 uptake. Science 298:2344. doi: 10.1126/science.1079444 PubMedCrossRefGoogle Scholar
  36. Rafiee P, Shi Y, Pritchard KA, Ogawa H, Eis ALW, Komorowski RA, Fitzpatrick CM, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Bakre JA (2003) Cellular redistribution of inducible hsp70 protein in human and rabbit heart in response to the stress of chronic hypoxia. J Biol Chem 278:43636–43644. doi: 10.1074/jbc.M212993200 PubMedCrossRefGoogle Scholar
  37. Requena A, Fernádez-Borràs J, Planas J (1997) The effects of a temperature rise on oxygen consumption and energy budget in gilthead sea bream. Aquacu Int 5:415–426. doi: 10.1023/A:1018332727888 CrossRefGoogle Scholar
  38. Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerisation, acquisition of DNA binding activity and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407PubMedGoogle Scholar
  39. Satyal SH, Chen DY, Fox SG, Kramer JM, Morimoto RI (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 12:1962–1974. doi: 10.1101/gad.12.13.1962 PubMedCrossRefGoogle Scholar
  40. Sheikh-Hamad D, Di Mari J, Suki WN, Safirstein R, Watts BA, Rouse D (1998) p38 kinase activity is essential for osmotic induction of mRNAs for hsp70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J Biol Chem 273:1832–1837. doi: 10.1074/jbc.273.3.1832 PubMedCrossRefGoogle Scholar
  41. Sheppard C (2001) The main issue affecting coasts of Indian and Western Pacific Oceans: a meta-analysis from sea at the millennium. Mar Pollut Bull 42:1199–1207. doi: 10.1016/S0025-326X(01)00238-7 PubMedCrossRefGoogle Scholar
  42. Sidell BD, Driedzic W, Stowe DB, Johnston IA (1987) Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol Zool 60:221–232Google Scholar
  43. Singer TD, Ballantyne JS (1989) Absence of extrahepatic lipid oxidation in a freshwater elasmobranch, the dwarf stingray (Potamotrygon megdalenae): evidence from enzyme activites. J Exp Zool 251:355–360. doi: 10.1002/jez.1402510312 CrossRefGoogle Scholar
  44. Trenbberth KE (1997) The use and abuse of climate models. Nature 386:131–133. doi: 10.1038/386131a0 CrossRefGoogle Scholar
  45. Uehara T, Kaneko M, Tanaka S, Okuma Y, Nomura Y (1999) Possible involvement of p38 MAP kinase in hsp70 expression induced by hypoxia in rat primary astrocytes. Brain Res 823:226–230. doi: 10.1016/S0006-8993(99)01178-6 PubMedCrossRefGoogle Scholar
  46. Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202:3611–3621PubMedGoogle Scholar
  47. Wood CM, MacDonald GD (eds) (1997) Global warming. Implications for freshwater and marine fish. Cambridge University Press, Cambridge, p 425Google Scholar
  48. Xia W, Voellmy R (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094–4102. doi: 10.1074/jbc.272.7.4094 PubMedCrossRefGoogle Scholar
  49. Zakhartsev M, De Watcher B, Santoris FJ, Pörtner HO, Blust R (2003) Thermal physiology of the common eelpout (Zoarces viviparous). J Comp Physiol [B] 173(5):365–378. doi: 10.1007/s00360-003-0342-z Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Konstantinos Feidantsis
    • 1
  • Hans O. Pörtner
    • 2
  • Antigoni Lazou
    • 1
  • Basile Kostoglou
    • 1
  • Basile Michaelidis
    • 1
    • 3
  1. 1.Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of BiologyUniversity of ThessalonikiThessalonikiGreece
  2. 2.Alfred-Wegener-Institut für Polar-und Meeresforschung, Physiologie mariner TiereBremerhavenGermany
  3. 3.Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of BiologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations