Marine Biology

, Volume 156, Issue 4, pp 619–628 | Cite as

Winter food utilisation by sympatric mysids in the Baltic Sea, studied by combined gut content and stable isotope analyses

  • Maiju LehtiniemiEmail author
  • Mikko Kiljunen
  • Roger I. Jones
Original Paper


We studied the winter dietary characteristics of two sympatric mysid species, Mysis mixta and M. relicta, which exploit both benthic and pelagic habitats during diel vertical migrations. Samples collected before and after the ice-covered period in the northern Baltic Sea were investigated using both stomach content analyses and stable isotope analyses of carbon and nitrogen. Both of the mysid species were omnivorous during winter and utilised both benthic and pelagic food sources. The main food source before the ice period was calanoid copepods (40 and 36% for M. mixta and M. relicta, respectively), and after ice-out calanoid copepods (23%) and zooplankton resting eggs (23%) for M. mixta and diatoms (44%) and calanoids (25%) for M. relicta. Their patterns of food utilisation broadly followed seasonal fluctuations in the abundance of the main prey groups. Although pelagic food availability is low in winter both mysid species utilised pelagic prey widely. We also show that when combining these different diet analysis methods it is important to take into account the time lag in isotopic signatures, otherwise the obtained results do not correspond but instead show the feeding history at different times.


Phytoplankton Dinoflagellate Stable Isotope Analysis Calanoid Copepod Harpacticoid Copepod 



We thank Torsten Sjölund for his help during the field collection of mysids, Maija Huttunen for phytoplankton counts and identification, and the Tvärminne Zoological Station for vessel and laboratory facilities. The comments by two anonymous referees improved the manuscript. This study was funded by the Academy of Finland (project # 212595) and by Walter and Andrée de Nottbeck Foundation.


  1. Aarnio K, Bonsdorff E, Rosenback N (1996) Food and feeding habits of juvenile flounder Platichthys flesus (L.), and turbot Scophthalmus maximus L. in the Åland Archipelago, northern Baltic Sea. J Sea Res 36:311–320. doi: CrossRefGoogle Scholar
  2. Albertsson J (2004) Trophic interactions involving mysid shrimps (Mysidacea) in the near-bottom habitat in the Baltic Sea. Aquat Ecol 38:457–469. doi: CrossRefGoogle Scholar
  3. Aneer G (1980) Estimates of feeding pressure on pelagic and benthic organisms by Baltic herring (Clupea harengus v. membras L.). Ophelia 1:265–275Google Scholar
  4. Arrhenius F, Hansson S (1993) Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar Ecol Prog Ser 96:125–137. doi: CrossRefGoogle Scholar
  5. Audzijonyte A, Väinölä R (2005) Diversity and distributions of circumpolar fresh- and brackish-water Mysis (Crustacea: Mysida): descriptions of M. relicta Lovén, 1862, M. salemaai n. sp., M. segerstralei n. sp. and M. diluviana n. sp., based on molecular and morphological characters. Hydrobiologia 544:89–141. doi: CrossRefGoogle Scholar
  6. Audzijonyte A, Pahlberg J, Väinölä R, Lindström M (2005) Spectral sensitivity differences in two Mysis sibling species (Crustacea: Mysida), Adaptation or phylogenetic constraints? J Exp Mar Biol Ecol 325:228–239. doi: CrossRefGoogle Scholar
  7. Båmstedt U, Gifford DJ, Irigoen X, Atkinson A, Roman M (2000) Feeding. In: Harris R, Wiebe P, Lenz J, Skjødal HR, Huntley M (eds) ICES zooplankton methodology manual. Academic Press, San Diego, pp 279–399Google Scholar
  8. Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257. doi: CrossRefGoogle Scholar
  9. Cartes JE, Sorbe JC (1998) Aspects of population structure and feeding ecology of the deep-water mysid Boreomysis arctica, a dominant species in western Mediterranean slope assemblages. J Plankton Res 20:2273–2290. doi: CrossRefGoogle Scholar
  10. Flinkman J, Aro E, Vuorinen I, Kotilainen P (1991) The annual changes in food selection of Baltic herring. ICES CM 1991/J: 14Google Scholar
  11. Flinkman J, Vuorinen I, Christianssen M (1994) Calanoid copepod eggs survive passage through fish digestive tracts. ICES J Mar Sci 51:127–129. doi: CrossRefGoogle Scholar
  12. Fulton RSIII (1982) Preliminary results of an experimental study of the effects of mysid predation on estuarine zooplankton community structure. Hydrobiologia 93:79–84. doi: CrossRefGoogle Scholar
  13. Gal G, Rudstam LG, Mills EL, Lantry JR, Johannsson OE, Greene CH (2006) Mysid and fish zooplanktivory in Lake Ontario: quantification of direct and indirect effects. Can J Fish Aquat Sci 63:2734–2747. doi: CrossRefGoogle Scholar
  14. Gorokhova E, Hansson S (1999) An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210. doi: CrossRefGoogle Scholar
  15. Gorokhova E, Lehtiniemi M (2007) A combined approach to understand trophic interactions between Cercopagis pengoi (Cladocera: Onychopoda) and mysids in the Gulf of Finland. Limnol Oceanogr 52:685–695CrossRefGoogle Scholar
  16. Grossnickle NE (1982) Feeding habits of Mysis relicta: an overview. Hydrobiologia 93:101–107. doi: CrossRefGoogle Scholar
  17. Hansson S, Rudstam LG, Johansson S (1990) Are marine planktonic invertebrates food limited? The case of Mysis mixta (Crustacea, Mysidacea) in the Baltic Sea. Oecologia 84:430–432CrossRefGoogle Scholar
  18. Heiskanen A-S, Kononen K (1994) Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Arch Hydrobiol 131:175–198Google Scholar
  19. Irvine K, Moss B, Bales M, Snook D (1993) The changing ecosystem of a shallow, brackish lake, Hickling Broad, Norfolk, U.K. I. Trophic relationships with special reference to the role of Neomysis integer. Freshw Biol 29:119–139. doi: CrossRefGoogle Scholar
  20. Kiljunen M, Rissanen A, Jones R (2006) Stable isotope analysis of dietary differences of two sympatric Baltic Mysis species. Verh Int Verein Limnol 29:1223–1227Google Scholar
  21. Kost ALB, Knight AW (1975) The food of Neomysis mercedis holmes in the Sacramento-San Joaquin estuary. Calif Fish Game 611:35–46Google Scholar
  22. Kremp A (2000) Distribution, dynamics and in situ seeding potential of Scrippsiella hangoei (Dinophyceae) cyst populations from the Baltic Sea. J Plankton Res 22:2155–2169. doi: CrossRefGoogle Scholar
  23. Kremp A, Heiskanen A-S (1999) Sexuality and cyst formation of the spring-bloom dinoflagellate Scrippsiella hangoei in the northern Baltic Sea. Mar Biol (Berl) 134:771–777. doi: CrossRefGoogle Scholar
  24. Kuparinen J, Leppänen J-M, Sarvala J, Sundberg A, Virtanen A (1984) Production and utilization of organic matter in a Baltic ecosystem off Tvärminne, southwest coast of Finland. Rapp Proc Verb Reun-Cons Int Explor Mer 193:180–192Google Scholar
  25. Lehtiniemi M, Nordström H (2008) Feeding differences among common littoral mysids, Neomysis integer, Praunus flexuosus and P. inermis. Hydrobiologia 614:309–320. doi: CrossRefGoogle Scholar
  26. Lehtonen KK, Andersin A-B (1998) Population dynamics, response to sedimentation and role in benthic metabolism of the amphipod Monoporeia affinis in an open sea area of the northern Baltic Sea. Mar Ecol Prog Ser 168:71–85. doi: CrossRefGoogle Scholar
  27. Lignell R, Heiskanen A-S, Kuosa H, Gundersen K, Kuuppo-Leinikki P, Pajuniemi R, Uitto A (1993) Fate of a phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Mar Ecol Prog Ser 94:239–252. doi: CrossRefGoogle Scholar
  28. Mauchline J (1980) The biology of mysids and euphausiids. Adv Mar Biol 18:1–677Google Scholar
  29. Mohammadian MA, Hansson S, De Stasio BT (1997) Are marine planktonic invertebrates food limited? The functional response of Mysis mixta (Crustacea, Mysidacea) in the Baltic Sea. Mar Ecol Prog Ser 150:113–119. doi: CrossRefGoogle Scholar
  30. Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166–170. doi: CrossRefGoogle Scholar
  31. Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 128:171–179. doi: CrossRefGoogle Scholar
  32. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 181:293–320. doi: CrossRefGoogle Scholar
  33. Pinnegar JK, Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13:225–231. doi: CrossRefGoogle Scholar
  34. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  35. Rudstam LG, Hansson S, Larsson U (1986) Abundance, species composition and production of mysid shrimps in a coastal area of the northern Baltic proper. Ophelia (Suppl) 4:225–238Google Scholar
  36. Rudstam LG, Danielsson K, Hansson S, Johansson S (1989) Diel vertical migration and feeding patterns of Mysis mixta (Crustacea, Mysidacea) in the Baltic Sea. Mar Biol (Berl) 101:43–52. doi: CrossRefGoogle Scholar
  37. Salemaa H, Tyystjärvi-Muuronen K, Aro E (1986) Life histories, distribution and abundance of Mysis mixta and Mysis relicta in the northern Baltic Sea. Ophelia Suppl 4:239–247Google Scholar
  38. Salemaa H, Vuorinen I, Välipakka P (1990) The distribution and abundance of Mysis populations in the Baltic Sea. Ann Zool Fenn 27:253–257Google Scholar
  39. Taylor MD (2008) Spatial and temporal patterns of habitat use by three estuarine species of mysid shrimp. Mar Freshw Res 59:792–798. doi: CrossRefGoogle Scholar
  40. Thiel R (1996) The impact of fish predation on the zooplankton community in a southern Baltic bay. Limnologica 26:123–137Google Scholar
  41. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404. doi:[1395:PCCANA]2.0.CO;2 CrossRefGoogle Scholar
  42. Väinölä R (1986) Sibling species and phylogenetic relationships of Mysis relicta (Crustacea: Mysidacea). Ann Zool Fenn 23:207–221Google Scholar
  43. Väinölä R, Vainio JK (1998) Distributions, life cycles and hybridization of two Mysis relicta group species (Crustacea: Mysida) in the northern Baltic Sea and Lake Båven. Hydrobiologia 368:137–148. doi: CrossRefGoogle Scholar
  44. Viherluoto M, Viitasalo M (2001a) Effect of light on the feeding rates of pelagic and littoral mysid shrimps: a trade-off between feeding success and predation avoidance. J Exp Mar Biol Ecol 261(2):237–244. doi: CrossRefGoogle Scholar
  45. Viherluoto M, Viitasalo M (2001b) Temporal variability in functional responses and prey selectivity of the pelagic mysid, Mysis mixta, in natural prey assemblages. Mar Biol (Berl) 138:575–583. doi: CrossRefGoogle Scholar
  46. Viherluoto M, Kuosa H, Flinkman J, Viitasalo M (2000) Food utilisation of pelagic mysids, Mysis mixta and M. relicta, during their growing season in the northern Baltic Sea. Mar Biol (Berl) 136:553–559. doi: CrossRefGoogle Scholar
  47. Viitasalo M (1992) Mesozooplankton of the Gulf of Finland and northern Baltic Proper: a review of monitoring data. Ophelia 35:147–168CrossRefGoogle Scholar
  48. Viitasalo M, Katajisto T (1994) Mesozooplankton resting eggs: identification and vertical distribution in laminated and mixed sediments. Mar Biol (Berl) 120:455–466. doi: CrossRefGoogle Scholar
  49. Viitasalo M, Rautio M (1998) Zooplanktivory by Praunus flexuosus (Crustacea: Mysidacea): functional responses and prey selection in relation to prey escape responses. Mar Ecol Prog Ser 174:77–87. doi: CrossRefGoogle Scholar
  50. Viitasalo M, Katajisto T, Vuorinen I (1994) Seasonal dynamics of Acartia bifilosa and Eurytemora affinis (Copepoda: Calanoida) in relation to abiotic factors in the northern Baltic Sea. Hydrobiologia 292(293):415–422Google Scholar
  51. Viitasalo S, Viitasalo M (2004) Predation by mysid shrimps (Mysis mixta and M. relicta) on benthic eggs of Bosmina longispina maritima (Cladocera) in the northern Baltic Sea. Mar Ecol Prog Ser 281:155–163. doi: CrossRefGoogle Scholar
  52. Vilas C, Drake P, Fockedey N (2008) Feeding preferences of estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus in a temperate estuary (Guadalquivir Estuary, SW, Spain). Estuar Coast Shelf Sci 77:345–356. doi: CrossRefGoogle Scholar
  53. Webb S, Hedges REM, Simpson SJ (1998) Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J Exp Biol 201:2903–2911PubMedGoogle Scholar
  54. Wells RJD, Cowan JH Jr, Fry B (2008) Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar Ecol Prog Ser 361:213–225. doi: CrossRefGoogle Scholar
  55. Werner I, Auel H (2004) Environmental conditions and overwintering strategies of planktonic metazoans in and below coastal ice in the Gulf of Finland (Baltic Sea). Sarsia 89:102–116. doi: CrossRefGoogle Scholar
  56. Wiktor K, Szaniawska A (1988) Energy content in relation to the population dynamics of Mysis mixta (Liljeborg) from the southern Baltic. Kiel Meeresforsch Sonderh 6:154–161Google Scholar
  57. Winkler G, Martineau C, Dodson JJ, Vincent WF, Johnson LE (2007) Trophic dynamics of two sympatric mysid species in an estuarine transition zone. Mar Ecol Prog Ser 332:171–187. doi: CrossRefGoogle Scholar
  58. Zagursky G, Feller RJ (1985) Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis Americana. Estuaries 8:355–362. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Maiju Lehtiniemi
    • 1
    Email author
  • Mikko Kiljunen
    • 2
  • Roger I. Jones
    • 2
  1. 1.Finnish Institute of Marine ResearchHelsinkiFinland
  2. 2.Department of Biological and Environmental ScienceUniversity of JyvaskylaJyväskyläFinland

Personalised recommendations