Marine Biology

, Volume 156, Issue 3, pp 439–446 | Cite as

Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae

  • Michael J. O’Donnell
  • LaTisha M. Hammond
  • Gretchen E. Hofmann
Original Paper

Abstract

Ocean acidification (OA) and the biological consequences of altered seawater chemistry have emerged as a significant environmental threat to healthy marine ecosystems. Because a more acidic ocean interferes with fixation of calcium carbonate to form shells or calcified skeletons, future ocean chemistry may significantly alter the physiology of calcifying marine organisms. These alterations may manifest themselves directly in the calcification process, or have synergistic effects with other environmental factors such as elevated temperatures. New tools permit us to explore subtle changes in gene expression patterns in response to environmental conditions. We raised sea urchins (Strongylocentrotus franciscanus) under conditions simulating future atmospheric CO2 levels of 540 and 970 ppm. When larvae raised under elevated CO2 conditions were subjected to 1-h acute temperature stress, their ability to mount a physiological response (as measured by expression of the molecular chaperone hsp70) was reduced relative to those raised under ambient CO2 conditions. These results represent the first use of gene expression assays to study the effects of OA on sea urchin development. They highlight the importance of looking at multiple environmental factors simultaneously as this approach may reveal previously unsuspected biological impacts of atmospheric changes.

References

  1. Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Oxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687. doi:10.1016/j.chemosphere.2005.04.111 PubMedCrossRefGoogle Scholar
  2. Bibby R, Cleall-Harding Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Lett 3:699–701PubMedCrossRefGoogle Scholar
  3. Buckley BA, Hofmann GE (2004) Magnitude and duration of thermal stress determine kinetics of hsp gene regulation in the goby Gillichthys mirabilis. Physiol Biochem Zool 77:570–581. doi:10.1086/420944 PubMedCrossRefGoogle Scholar
  4. Buckley BA, Gracey AY, Somero GN (2006) The cellular response to heat stress in the goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 209:2660–2677. doi:10.1242/jeb.02292 PubMedCrossRefGoogle Scholar
  5. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04. doi:10.1029/2004JC002671 CrossRefGoogle Scholar
  6. Cooper TF, De’Ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538. doi:10.1111/j.1365-2486.2007.01520.x CrossRefGoogle Scholar
  7. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  8. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology Annual review of physiology 61:243–282. doi:10.1146/annurev.physiol.61.1.243
  9. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329 PubMedCrossRefGoogle Scholar
  10. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492. doi:10.1126/science.1155676 PubMedCrossRefGoogle Scholar
  11. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, Heip CHR (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34, L07603. doi:10.1029/2006GL028554
  12. Giudice G, Sconzo G, Roccheri MC (1999) Studies on heat shock proteins in sea urchin development. Dev Growth Differ 41:375–380. doi:10.1046/j.1440-169x.1999.00450.x PubMedCrossRefGoogle Scholar
  13. Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146. doi:10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2 CrossRefGoogle Scholar
  14. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345 PubMedCrossRefGoogle Scholar
  15. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. doi:10.1111/j.1461-0248.2005.00871.x PubMedCrossRefGoogle Scholar
  16. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509 PubMedCrossRefGoogle Scholar
  17. Hoffman JR, Hansen LJ, Klinger T (2003) Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol 39:268–272Google Scholar
  18. IPCC (2001) Climate change 2001: synthesis report. A contribution of working groups I, II, and III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  19. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2006, St. Petersburg. Sponsored by NSF, NOAA, and the US Geological SurveyGoogle Scholar
  20. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers Ku S, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117. doi:10.1038/ngeo100 CrossRefGoogle Scholar
  21. Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169. doi:10.3354/meps274161 CrossRefGoogle Scholar
  22. Kurihara H, Shimode S, Shirayama Y (2005) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanogr 60:743–750. doi:10.1007/s10872-004-5766-x CrossRefGoogle Scholar
  23. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98. doi:10.3354/ab00009 CrossRefGoogle Scholar
  24. Langenbuch M, Pörtner HO (2002) Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid–base variables. J Exp Biol 205:1153–1160PubMedGoogle Scholar
  25. Langenbuch M, Pörtner HO (2004) High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol 70:55–61. doi:10.1016/j.aquatox.2004.07.006 PubMedCrossRefGoogle Scholar
  26. Lesser MP, Stochaj WR, Tapley DW, Shick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232. doi:10.1007/BF00265015 CrossRefGoogle Scholar
  27. McNeil BI, Matear RJ (2006) Projected climate change impact on oceanic acidification. Carbon Balance Manag 1:2. doi:10.1186/1750-0680-1-2 PubMedCrossRefGoogle Scholar
  28. Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151. doi:10.1016/j.jtherbio.2007.01.010 CrossRefGoogle Scholar
  29. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi:10.1038/nature04095 PubMedCrossRefGoogle Scholar
  30. Osovitz CJ, Hofmann GE (2005) Thermal history-dependent expression of the hsp70 gene in purple sea urchins: Biogeographic patterns and the effect of temperature acclimation. J Exp Mar Biol Ecol 327:134–143. doi:10.1016/j.jembe.2005.06.011 CrossRefGoogle Scholar
  31. Pearse JS (2006) Ecological role of purple sea urchins. Science 314:940–941. doi:10.1126/science.1131888 PubMedCrossRefGoogle Scholar
  32. Pörtner H, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718. doi:10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  33. Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from earth history to global change. J Geophys Res 110:C09S10. doi:10.1029/2004JC002561
  34. Przeslawski R, Davis AR, Benkendorff K (2005) Synergistic effects associated with climate change and the development of rocky shore molluscs. Glob Change Biol 11:515–522. doi:10.1111/j.1365-2486.2005.00918.x CrossRefGoogle Scholar
  35. Raven J, Caldeira K, Elderfield H (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Royal Society Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952Google Scholar
  36. Sea Urchin Genome Sequencing Consortium (2006). The genome of the sea urchin Strongy locentrotus purpuratus. Science 314:941–952. doi:10.1126/science.1097329 Google Scholar
  37. Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110:C09S08. doi:10.1029/2004JC002618 CrossRefGoogle Scholar
  38. Siebel BA, Walsh PJ (2001) Potential impacts of CO2 on deep-sea biota. Science 294:319–320. doi:10.1126/science.1065301 CrossRefGoogle Scholar
  39. Skirrow G, Whitfield M (1975) The effect of increases in the atmospheric carbon dioxide content on the carbonate ion concentration of surface ocean water at 25°C. Limnol Oceanogr 20:103CrossRefGoogle Scholar
  40. Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington, Seattle, p 670Google Scholar
  41. Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J Exp Biol 202:2925–2936PubMedGoogle Scholar
  42. Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366:187–197. doi:10.1016/j.jembe.2008.07.024 CrossRefGoogle Scholar
  43. Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 ad. Proc Natl Acad Sci USA 104:5738–5742. doi:10.1073/pnas.0606292104 PubMedCrossRefGoogle Scholar
  44. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85. doi:10.2144/05391RV01 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michael J. O’Donnell
    • 1
    • 2
  • LaTisha M. Hammond
    • 3
  • Gretchen E. Hofmann
    • 1
    • 3
  1. 1.Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Friday Harbor LaboratoriesUniversity of WashingtonFriday HarborUSA
  3. 3.Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations