Marine Biology

, Volume 156, Issue 3, pp 289–299

Feeding macroecology of territorial damselfishes (Perciformes: Pomacentridae)

  • Diego R. Barneche
  • S. R. Floeter
  • D. M. Ceccarelli
  • D. M. B. Frensel
  • D. F. Dinslaken
  • H. F. S. Mário
  • C. E. L. Ferreira
Original Paper

Abstract

The present study provides the first analysis of the feeding macroecology of territorial damselfishes (Perciformes: Pomacentridae), a circumtropical family whose feeding and behavioral activities are important in structuring tropical and subtropical reef benthic communities. The analyses were conducted from data collected by the authors and from the literature. A strong positive correlation was observed between bite rates and sea surface temperature (SST) for the genus Stegastes. A negative correlation was found between bite rates and mean body size for the genera Stegastes and Pomacentrus, but this relationship was not significant when all territorial pomacentrids were analyzed together. A negative correlation between body size and SST was observed for the whole group and for the genera Stegastes, and Pomacentrus. No relationship was found between territory size and feeding rates. Principal Components Analysis showed that differences in feeding rates accounted for most of the variability in the data. It also suggested that body size may be important in characterizing the different genera. In general, tropical species are smaller and have higher bite rates than subtropical ones. This study extended the validity of Bergmann’s rule, which states that larger species or larger individuals within species occur towards higher latitudes and/or lower temperatures, for an important group of reef fishes. The identification of large-scale, robust ecological patterns in the feeding ecology of pomacentrid fishes may establish a foundation for predicting large-scale changes in reef fish assemblages with expected future changes in global SST.

References

  1. Alimov AF (2003) Territoriality in aquatic animals and their sizes. Biol Bull 30:79–86. doi:10.1023/A:1022075829401 CrossRefGoogle Scholar
  2. Allen GR (1991) Damselfishes of the World. Aquariums Systems, MelleGoogle Scholar
  3. Alwany M, Thaler E, Stachowitsch M (2005) Territorial behaviour of Acanthurus sohal and Plectroglyphidodon leucozona on the fringing Egyptian Red Sea reefs. Environ Biol Fishes 72:321–334. doi:10.1007/s10641-004-2587-0 CrossRefGoogle Scholar
  4. Arias-Gonzalez JE, Done TJ, Page CA, Cheal AJ, Kininmonth S, Garza-Perez JR (2006) Towards a reefscape ecology: relating biomass and trophic structure of fish assemblages to habitat at Davies Reef, Australia. Mar Ecol Prog Ser 320:29–41. doi:10.3354/meps320029 CrossRefGoogle Scholar
  5. Brawley SH, Adey WH (1977) Territorial behavior of threespot damselfish (Eupomacentrus planifrons) increases reef algal biomass and productivity. Environ Biol Fishes 2:45–51. doi:10.1007/BF00001415 CrossRefGoogle Scholar
  6. Brown JH (1995) Macroecology. University of Chicago Press, ChicagoGoogle Scholar
  7. Ceccarelli DM (2007) Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26:853–866. doi:10.1007/s00338-007-0275-1 CrossRefGoogle Scholar
  8. Ceccarelli DM, Jones GP, McCook LJ (2001) Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanogr Mar Biol Annu Rev 39:355–389Google Scholar
  9. Ceccarelli DM, Jones GP, McCook LJ (2005) Foragers versus farmers: contrasting effects of two behavioural groups of herbivores on coral reefs. Oecologia 145:445–453. doi:10.1007/s00442-005-0144-y PubMedCrossRefGoogle Scholar
  10. Ceccarelli DM, Jones GP, McCook LJ (2006) Impacts of simulated overfishing on the territoriality of coral reef damselfish. Mar Ecol Prog Ser 309:255–262. doi:10.3354/meps309255 CrossRefGoogle Scholar
  11. Choat JH, Robertson DR (2002) Age-based studies on coral reef fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 57–80Google Scholar
  12. Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905. doi:10.1046/j.1365-2656.1999.00337.x CrossRefGoogle Scholar
  13. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi:10.1126/science.199.4335.1302 PubMedCrossRefGoogle Scholar
  14. Cooper WJ, Smith LL, Westneat MW (2008) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phyl Evol (in press)Google Scholar
  15. Crossman DJ, Choat JH, Clements KD, Hardy T, McConochie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605Google Scholar
  16. Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120. doi:10.1007/s00442-007-0714-2 PubMedCrossRefGoogle Scholar
  17. Eeley H, Foley RA (1999) Species richness, species range size and ecological specialisation among African primates: geographical patterns and conservation implications. Biodivers Conserv 8:1033–1056. doi:10.1023/A:1008831320469 CrossRefGoogle Scholar
  18. Ferreira CEL, Gonçalves JEA, Coutinho R, Peret AC (1998) Herbivory by the dusky damselfish Stegastes fuscus (Cuvier, 1830) in a tropical rocky shore: effects on the benthic community. J Exp Mar Biol Ecol 229:241–264. doi:10.1016/S0022-0981(98)00056-2 CrossRefGoogle Scholar
  19. Floeter SR, Behrens MD, Ferreira CEL, Paddack MJ, Horn MH (2005) Geographical gradients of marine herbivorous fishes: patterns and processes. Mar Biol 147:1435–1447. doi:10.1007/s00227-005-0027-0 CrossRefGoogle Scholar
  20. Floeter SR, Vázquez DP, Grutter AS (2007) The macroecology of marine cleaning mutualisms. J Anim Ecol 76:105–111. doi:10.1111/j.1365-2656.2006.01178.x PubMedCrossRefGoogle Scholar
  21. Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500. doi:10.1111/j.1365-2699.2007.01772.x CrossRefGoogle Scholar
  22. Hata H, Kato M (2002) Weeding by the herbivorous damselfish Stegastes nigricans in nearly monocultural algae farms. Mar Ecol Prog Ser 237:227–231. doi:10.3354/meps237227 CrossRefGoogle Scholar
  23. Hata H, Kato M (2004) Monoculture and mixed-species algal farms on a coral reef are maintained through intensive and extensive management by damselfishes. J Exp Mar Biol Ecol 313:285–296. doi:10.1016/j.jembe.2004.08.009 CrossRefGoogle Scholar
  24. Hixon MA, Brostoff WN (1983) Damselfish as keystone species in reverse: intermediate disturbance and diversity of reef algae. Science 230:511–513. doi:10.1126/science.220.4596.511 CrossRefGoogle Scholar
  25. Hixon MA, Webster MS (2002) Density dependence in reef fish populations. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 303–325Google Scholar
  26. Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272Google Scholar
  27. Jan R-Q, Ho C-T, Shiah F-K (2003) Determinants of territory size of the dusky gregory. J Fish Biol 63:1589–1597. doi:10.1111/j.1095-8649.2003.00270.x CrossRefGoogle Scholar
  28. Kelt DA, Van Vuren DH (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645. doi:10.1086/320621 PubMedCrossRefGoogle Scholar
  29. Letourneur Y (2000) Spatial and temporal variability in territoriality of a tropical benthic damselfish on a coral reef (Reunion Island). Environ Biol Fishes 57:377–391. doi:10.1023/A:1007658830339 CrossRefGoogle Scholar
  30. Lison de Loma T, Harmelin-Vivien M (2002) Summer fluxes of organic carbon and nitrogen through a damselfish resident, Stegastes nigricans (Lacepède, 1803), on a coral reef flat at La Réunion (Indian Ocean). Mar Freshw Res 53:169–174. doi:10.1071/MF01145 CrossRefGoogle Scholar
  31. Lobel PS (1980) Herbivory by damselfishes and their role in coral reef community ecology. Bull Mar Sci 30:273–289Google Scholar
  32. Lomolino MV, Riddle BR, Brown JH (2006) Biogeography. Sinauer, MassachusettsGoogle Scholar
  33. Macpherson E, Duarte CM (1994) Patterns in species richness, size, and latitudinal range of East Atlantic fishes. Ecography 17:242–248. doi:10.1111/j.1600-0587.1994.tb00099.x CrossRefGoogle Scholar
  34. Meadows DW (2001) Centre-edge differences in behaviour, territory size and fitness in clusters of territorial damselfish: patterns, causes, and consequences. Behaviour 138:1085–1116. doi:10.1163/156853901753287154 CrossRefGoogle Scholar
  35. Menegatti JV, Vescovi DL, Floeter SR (2003) Interações agonísticas e forrageamento do peixe-donzela, Stegastes fuscus (Peciformes: Pomacentridae). Nat On Line 1:45–50Google Scholar
  36. Minns CK (1995) Allometry of home range size in lake and river fishes. Can J Fish Aquat Sci 52:1499–1508. doi:10.1139/f95-144 CrossRefGoogle Scholar
  37. Montgomery WL (1980) Comparative feeding ecology of two herbivorous damselfishes (Pomacentridae: Teleostei) from the Gulf of California, Mexico. J Exp Mar Biol Ecol 47:9–24. doi:10.1016/0022-0981(80)90134-3 CrossRefGoogle Scholar
  38. Osório RM, Rosa IL, Cabral H (2006) Territorial defense by the Brazilian damsel Stegastes fuscus (Teleostei: Pomacentridae). J Fish Biol 69:233–242. doi:10.1111/j.1095-8649.2006.01095.x CrossRefGoogle Scholar
  39. Polunin NVC, Klumpp DW (1989) Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J Exp Mar Biol Ecol 126:1–20. doi:10.1016/0022-0981(89)90121-4 CrossRefGoogle Scholar
  40. Purcell S, Bellwood DR (2001) Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20:117–125. doi:10.1007/s003380100150 CrossRefGoogle Scholar
  41. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei : Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 31:66–88. doi:10.1016/S1055-7903(03)00278-1 PubMedCrossRefGoogle Scholar
  42. Rex MA, Etter RJ, Stuart CT (1997) Large-scale patterns of species richness in the deep-sea benthos. In: Ormond RG, Gage JD (eds) Marine biodiversity: patterns and process. Cambridge University Press, Cambridge, pp 94–116Google Scholar
  43. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1 CrossRefGoogle Scholar
  44. Robertson DR (1984) Cohabitation of competing territorial damselfishes on a Caribbean coral reef. Ecology 65:1121–1135. doi:10.2307/1938320 CrossRefGoogle Scholar
  45. Robertson DR (1995) Competitive ability and the potential for lotteries among territorial reef fishes. Oecologia 103:180–190. doi:10.1007/BF00329078 CrossRefGoogle Scholar
  46. Robertson DR (1996) Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77:885–899. doi:10.2307/2265509 CrossRefGoogle Scholar
  47. Robertson DR, Lassig B (1980) Spatial distribution patterns and coexistence of a group of territorial damselfishes from the Great Barrier Reef. Bull Mar Sci 30:187–203Google Scholar
  48. Roy K, Martein KK (2001) Latitudinal distribution of body size in northeastern Pacific marine bivalves. J Biogeogr 28:485–493. doi:10.1046/j.1365-2699.2001.00561.x CrossRefGoogle Scholar
  49. Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67Google Scholar
  50. Sale PF (1978) Coexistence of coral reef fishes—a lottery for living space. Environ Biol Fishes 3:85–102. doi:10.1007/BF00006310 CrossRefGoogle Scholar
  51. Schmidt-Nielsen K (2002) Animal physiology: adaptation & environment. Cambridge University Press, CambridgeGoogle Scholar
  52. Scott FJ, Russ GR (1987) Effects of grazing on species composition of the epilithic algal community on coral reefs of the central Great Barrier Reef. Mar Ecol Prog Ser 39:293–304. doi:10.3354/meps039293 CrossRefGoogle Scholar
  53. Smith KF, Brown JH (2002) Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Glob Ecol Biogeogr 11:313–322. doi:10.1046/j.1466-822X.2002.00286.x CrossRefGoogle Scholar
  54. Souza AT (2007) Uso de habitat, comportamento alimentar e territorial de Stegastes rocasensis (Emery, 1972) (Pomacentridae: Teleostei) em Fernando de Noronha—PE. MSc thesis in Biological Sciences (Zoology), Universidade Federal da Paraíba, João Pessoa, BrazilGoogle Scholar
  55. Waldner RE, Robertson DR (1980) Patterns of habitat partitioning by eight species of territorial Caribbean damselfishes (Pisces: Pomacentridae). Bull Mar Sci 30:171–186Google Scholar
  56. Wellington GM (1982) Depth zonation of corals in the Gulf of Panama: control and facilitation by resident reef fishes. Ecol Monogr 52:223–241. doi:10.2307/2937329 CrossRefGoogle Scholar
  57. Wilson S, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog Ser 153:299–310. doi:10.3354/meps153299 CrossRefGoogle Scholar
  58. Yager TK, Summerfelt RC (1993) Effects of fish size and feeding frequency on metabolism of juvenile walleye. Aquac Eng 12:19–36. doi:10.1016/0144-8609(93)90024-6 CrossRefGoogle Scholar
  59. Zar JH (1999) Biostatiscal analysis. Prentice Hall, Upper Saddles RiverGoogle Scholar
  60. Zemke-White LW, Choat JH, Clements K (2002) A re-evaluation of the diel feeding hypothesis for marine herbivorous fishes. Mar Biol 141:571–579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Diego R. Barneche
    • 1
  • S. R. Floeter
    • 1
  • D. M. Ceccarelli
    • 2
    • 5
  • D. M. B. Frensel
    • 1
  • D. F. Dinslaken
    • 1
  • H. F. S. Mário
    • 3
  • C. E. L. Ferreira
    • 4
  1. 1.Laboratório de Biogeografia e Macroecologia Marinha, Depto. de Ecologia e ZoologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Centre for Coral Reef Biodiversity, School of Marine Biology and AquacultureJames Cook UniversityTownsvilleAustralia
  3. 3.Laboratório de Hidráulica Marinha, Depto. de Engenharia Sanitária e AmbientalUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  4. 4.Laboratório de Ecologia e Conservação de Ambientes Recifais, Depto. de Biologia MarinhaUniversidade Federal FluminenseNiteróiBrazil
  5. 5.C&R Consulting (Geochemical and Hydrobiological Solutions) Pty LtdThuringowaAustralia

Personalised recommendations