Marine Biology

, Volume 156, Issue 3, pp 269–275 | Cite as

The effect of size and cheliped autotomy on sexual competition between males of the mud crab Cyrtograpsus angulatus Dana

  • Pedro DaleoEmail author
  • Tomás Luppi
  • Agustina Mendez Casariego
  • Mauricio Escapa
  • Pablo Ribeiro
  • Paola Silva
  • Oscar Iribarne
Original Paper


Size advantage in male–male competition over mates, combined with male preference over large females, is a common feature that can drive to size assortative mating and, eventually, sexual selection. In crabs, appendage autotomy can affect assortative mating and opportunity for sexual selection by affecting size advantage in mating contests. In this work, we evaluate the effect of size and appendage autotomy in generating assortative mating in the mud crab Cyrtograpsus angulatus. Field observations of guarding pairs in two different populations show a positive correlation between carapace width of males and females in both the populations. In one of the populations, incidence of appendage autotomy was low and the variability in the size of reproductive males was lower than the variability in the size of randomly collected males (i.e. only larger males were successful in getting a female), whereas there was no differences in the other population (i.e. most male sizes were successful) where the incidence of appendage autotomy was very high, indicating that the importance of size is higher when the incidence of autotomy is low. In this context, experiments (in both populations) show that, in contests for a female, larger males outcompete smaller ones only when they had intact appendages. When males had missing chelipeds, winning or loosing against smaller males was random. This may lead to a decrease in the importance of male size in populations with high incidence of cheliped autotomy, affecting assortative mating and opportunity for selection and, thus, affecting selective pressures.


Mating Success Assortative Mating Large Male Small Male Large Female 



We thank Juan Alberti, three anonymous reviewers and the editor, Dr. Maria Byrne for helpful comments on the manuscript. This project was supported by the Universidad Nacional de Mar del Plata, the Fundacion Antorchas (Argentina; A013672 and 13900-13) and CONICET (Argentina PIP2851), ANPCyT (Argentina PICT13527); all granted to O.I. P.D., A.M.C., M.E. and P.R. were supported by Doctoral scholarship from CONICET (Argentina).


  1. Adams J, Watt PJ, Naylor CJ, Greenwood PJ (1989) Loading constrains, body size and mating preference in Gammarus species. Hydrobiologia 183:157–164. doi: CrossRefGoogle Scholar
  2. Arnqvist G, Rowe L, Krupa JJ, Sih A (1996) Assortative mating by size: a meta-analysis of mating patterns in water striders. Evol Ecol 10:265–284. doi: CrossRefGoogle Scholar
  3. Arnold SJ, Wade MJ (1984a) On the measurement of natural and sexual selection: theory. Evol Int J Org Evol 38:709–719. doi: CrossRefGoogle Scholar
  4. Arnold SJ, Wade MJ (1984b) On the measurement of natural and sexual selection: applications. Evol Int J Org Evol 38:720–734. doi: CrossRefGoogle Scholar
  5. Bertness MD, Crain CM, Silliman BR, Bazterrica MC, Reyna MV, Hidalgo F, Fariña JK (2006) The community structure of western Atlantic Patagonian rocky shores. Ecol Monogr 76:429–460. doi:[0439:TCSOWA]2.0.CO;2 CrossRefGoogle Scholar
  6. Boschi EE (2000) Species of Decapod Crustaceans and their distribution in the American Marine Zoogeographic Provinces. Rev Invest Desarro Pesq Argent 13:1–136Google Scholar
  7. Brockerhoff AM, McLay CL (2005) Comparative analysis of the mating strategies of grapsid crabs with special reference to the intertidal crabs Cyclograpsus lavauxi and Helice crassa (Decapoda:grapsidae) from New Zeland. J Crustac Biol 25:507–520. doi: CrossRefGoogle Scholar
  8. Brown WD (1993) The causes of size-assortative mating in the leaf beetle Trirhabda canadensis (Coleoptera: chrysomeridae). Behav Ecol Sociobiol 33:151–157. doi: CrossRefGoogle Scholar
  9. Crespi BJ (1989) Causes of assortative mating in arthropods. Anim Behav 38:980–1000. doi: CrossRefGoogle Scholar
  10. Daleo P, Escapa M, Alberti J, Iribarne O (2006) Negative effects of an autogenic ecosystem engineer: interactions between coralline turf and an ephemeral green algae. Mar Ecol Prog Ser 315:67–73. doi: CrossRefGoogle Scholar
  11. Dewsbury DA (1982) Ejaculate cost and mate choice. Am Nat 119:601–610. doi: CrossRefGoogle Scholar
  12. Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–222. doi: CrossRefGoogle Scholar
  13. Fasano JL, Hernández MA, Isla FI, Schnack EJ (1982) Aspectos evolutivos y ambientales de la laguna Mar Chiquita (Provincia de Buenos Aires, Argentina). In: Int Symp Coastal Lagoons, Bordeaux, France, 8–14 September 1981. Oceanol Acta 5:285–292Google Scholar
  14. Hatcher MJ, Dunn AM (1997) Size and pairing success Gammarus duebeni: can females be too big. Anim Behav 54:1301–1308. doi: CrossRefGoogle Scholar
  15. Head ML, Brooks R (2006) Sexual coercion and the opportunity for sexual selection in guppies. Anim Behav 71:515–522. doi: CrossRefGoogle Scholar
  16. Iribarne O, Fernandez M, Armstrong D (1996) Mate choice in the amphipod Eogammarus oclairi Bousfield: the role of current velocity, random assortment, habitat heterogeneity and male’s behavior. Mar Freshw Behav Physiol 27:223–237CrossRefGoogle Scholar
  17. Iribarne O, Martinetto P, Schwindt E, Botto F, Bortolus A, Garcia Borboroglu P (2003) Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. J Exp Mar Biol Ecol 296:167–182. doi: CrossRefGoogle Scholar
  18. Jivoff P (1997) Sexual competition among male Blue crabs, Callinectes sapidus. Biol Bull 193:368–380. doi: CrossRefGoogle Scholar
  19. Jormalainen V (1998) Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Quart Rev Biol 73:275–303. doi: CrossRefGoogle Scholar
  20. Juanes F, Smith LD (1995) The ecological consequences of limb damage and loss in decapod crustaceans: a review and prospectus. J Exp Mar Biol Ecol 193:197–223. doi: CrossRefGoogle Scholar
  21. Luppi TA, Bas C, Spivak E, Anger K (1997) Fecundity of two grapsid crab species in the Laguna Mar Chiquita, Argentina. Arch Fisch Meeresforsch 45:149–166Google Scholar
  22. Mills SC, Reynolds JD (2003) Operational sex ratio and alternative reproductive behaviour in the European bitterling, Rhodeus sericeus. Behav Ecol Sociobiol 54:98–104. doi: Google Scholar
  23. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev Camb Philos Soc 45:525–567. doi: CrossRefGoogle Scholar
  24. Reading KL, Backwell PRY (2007) Can beggars be choosers? Male mate choice in a fiddler crab. Anim Behav 74:867–872. doi: CrossRefGoogle Scholar
  25. Sainte-Marie B, Urbani N, Sévigni J-M, Hazel F, Kuhnlein U (1999) Multiple choice criteria and the dynamics of assortative matting during the first breeding season of female snow crab Chionoecetes opilio (Brachyura, Majidae). Mar Ecol Prog Ser 181:141–153. doi: CrossRefGoogle Scholar
  26. Silva P, Luppi TA, Spivak E (2003) Limb autotomy, epibiosis on embryos, and brooding care in the crab Cyrtograpsus angulatus (Brachyura: Varunidae). J Mar Biol Assoc UK 83:1015–1022. doi: CrossRefGoogle Scholar
  27. Smith LD (1992) The impact of limb autotomy on mate competition in blue crabs Callinectes sapidus Rathbun. Oecologia 89:494–501CrossRefGoogle Scholar
  28. Smith LD, Hines AH (1991) The effect of cheliped loss on blue crab Callinectes sapidus Rathbun foraging rate on soft-shell clams Mya arenaria L. J Exp Mar Biol Ecol 151:245–256. doi: CrossRefGoogle Scholar
  29. Sneddon LU, Huntingford FA, Taylor AC (1997) Weapon size versus body size as a predictor of winning in fights between shore crabs, Carcinus maenas (L.). Behav Ecol Sociobiol 41:237–242. doi: CrossRefGoogle Scholar
  30. Sneddon LU, Huntingford FA, Taylor AC, Orr JF (2000) Weapon strength and competitive success in the fights of shore crabs (Carcinus maenas). J Zool (Lond) 250:397–403. doi: CrossRefGoogle Scholar
  31. Spivak E (1988) Molt and growth in Cyrtograpsus angulatus Dana (Crustacea, Brachyura). J Nat Hist 22:617–629. doi: CrossRefGoogle Scholar
  32. Spivak E (1997a) Los crustáceos decápodos del Atlántico sudoccidental (25–55S): distribucion y ciclos de vida. Invest Mar Valparaiso 25:69–91Google Scholar
  33. Spivak E (1997b) Cangrejos estuariales del Atlántico sudoccidental (25–41S) (Crustacea: Decapoda: Brachyura). Invest Mar Valparaiso 25:105–120Google Scholar
  34. Spivak E, Politis A (1989) High incidence of limb autotomy in a crab population from a coastal lagoon in the province of Buenos Aires, Argentina. Can J Zool 67:1976–1985CrossRefGoogle Scholar
  35. Spivak E, Anger K, Luppi T, Bas C, Ismael D (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgol Meersunters 48:59–78. doi: CrossRefGoogle Scholar
  36. Wada S, Ashidate M, Goshima S (1997) Observations on the reproductive behavior of the spiny king crab Paralithodes brevipes (Anomura: Lithodidae). Crust Res 26:56–61CrossRefGoogle Scholar
  37. Wasson K, Lyon BE, Knope M (2002) Hair-trigger autotomy in porcelain crabs is a highly effective escape strategy. Behav Ecol 13:481–486. doi: CrossRefGoogle Scholar
  38. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Pedro Daleo
    • 1
    • 2
    Email author
  • Tomás Luppi
    • 1
    • 2
  • Agustina Mendez Casariego
    • 1
    • 2
  • Mauricio Escapa
    • 2
    • 3
  • Pablo Ribeiro
    • 1
    • 2
  • Paola Silva
    • 1
    • 2
  • Oscar Iribarne
    • 1
    • 2
  1. 1.Departamento de Biología (FCEyN)Universidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto Argentino de Oceanografía (IADO)Bahía BlancaArgentina

Personalised recommendations