Marine Biology

, Volume 156, Issue 3, pp 261–268 | Cite as

Cnidosac morphology in dendronotacean and aeolidacean nudibranch molluscs: from expulsion of nematocysts to use in defense?

  • Rainer MartinEmail author
  • Martin Heß
  • Michael Schrödl
  • Karl-Heinz Tomaschko
Original Paper


Nudibranchs (Mollusca, Gastropoda) feeding on tentacles and polyps of Cnidaria thereby ingest both latent and discharged nematocysts (NCs) along with the food mass. In eolid nudibranchs (Opisthobranchia, Aeolidacea), many of the undischarged NCs are transported to terminal cnidosacs in their body appendages (cerata) and incorporated as kleptocnidae for defense. In the present report, the occurrence and fate of NCs in the digestive tracts of eolids is compared with hydrozoan-feeding dendronotacean nudibranchs (Opisthobranchia, Dendronotacea), which may show more basic stages in the evolution of cnidosacs. Tomographic reconstructions of the distal tips of cerata were composed from series of semithin light microscopic sections, utilizing 3D-surface rendering software. Doto acuta (Dendronotacea, Dotidae) does not have cnidosacs; transmission electron micrographs show that the NCs are digested in lysosomes of digestive gland cells. In contrast, species of the genus Hancockia (Dendronotacea, Hancockiidae) have several small cnidosacs in each ceras; they accumulate NCs in the digestive cells, as well as in the cnidosacs. Many of the cnidosacs were found open to the exterior with NCs in the process of expulsion. These and other structural details suggest assigning a function of expelling the NCs to the Hancockia spp. cnidosacs. It is proposed that cnidosacs similar to those of Hancockia spp. provide a clue to understanding how the defensive function of eolid cnidosacs may have evolved.


Digestive Gland Hydroid Tomographic Reconstruction Digestive Cell Midgut Gland 



Yuri Hooker (Lima) helped to collect specimens of Hancockia schoeferti. The fieldwork in Peru was supported by the GeoBioCenter (LMU) and the Deutsche Forschungsgemeinschaft (DFG SCHR 667/4 to MS). Claus Valentin provided excellent working conditions at the Institute of Marine Biology at Giglio. We would like to thank Prof. E. Koenig (Buffalo) for critically reading and revising the manuscript.

Supplementary material

227_2008_1080_MOESM1_ESM.tif (57 kb)
Phylogenetic relationships of cnidosac bearing nudibranch gastropods. The morphological data set (47 characters; one hypothetical plesiomorphic group plus 2 pleurobranchoidean taxa as outgroups, and 29 nudibranch taxa) used to reveal the phylogeny of the Nudibranchia by Wägele & Willan (2000) herein was supplemented by Hancockia and reanalyzed (PAUP). All characters were treated as unweighted and unordered; the tree was unrooted. The strict consensus tree of 120 equally parsimonious trees (102 steps) is shown; numbers refer to bootstrap values (<50 not indicated), obtained by a separate analysis (1000 replications, PAUP) with the same settings; a clade of Protaeolidiella and Phyllodesmium (marked in grey) received some bootstrap support but is not represented in the strict consensus tree. Species possessing cnidosacs with kleptocnidae are in bold face; Protaeolidiella has cnidosacs but without containing kleptocnidae. While the monophyly or e.g. Nudibranchia, Anthobranchia, and Doridacea is supported by high bootstrap values (>90), none of the traditional major dexiarchian taxa Arminacea, Dendronotacea and Aeolidacea results monophyletic. The Arminidae from the sister clade to a polytomy composed of members all three groups. The dendronotacean Hancockia (with cnidosacs) and Doto (without cnidosacs) group together, nestling within cnidosac-possessing eolid taxa in the strict consensus tree; however, these relationships are not statistically supported. From this, due to limited taxon and character sampling, very preliminary phylogenetic point of view, the systematic position of Hancockia and the evolution of cnidosacs remain unresolved


  1. Alejandrino A (2007) Phylogeny of Aeolidacea (Gastropoda: Nudibranchia). In: Jordaens K, Van Houtte N, Van Goethem J, Backeljau T (eds) World Congress of Malacology, Antwerp, Belgium, 15 July 2007, abstracts: 198Google Scholar
  2. Burghardt I, Stemmer K, Waegele H (2008) Symbiosis between Symbiodinium (Dinophyceae) and various taxa of Nudibranchia (Mollusca: Gastropoda), with analyses of long-term retention. Org Divers Evol 8:66–76. doi: CrossRefGoogle Scholar
  3. Day RM, Harris LG (1978) Selection and turnover of coelenterate nematocysts in some aeolid nudibranchs. Veliger 21:104–109Google Scholar
  4. Edmunds M (1966) Protective mechanisms in the Eolidacea (Mollusca: Nudibranchia). J Linn Soc Zool 47:27–71. doi: CrossRefGoogle Scholar
  5. Glaser OC (1910) The nematocysts of eolids. J Exp Zool 9:117–142. doi: CrossRefGoogle Scholar
  6. Grande C, Templado J, Cervera JL, Zardoya R (2004) Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Mol Biol Evol 21:303–313. doi: CrossRefGoogle Scholar
  7. Greenwood PG, Mariscal RN (1984a) Immature nematocyst incorporation by the aeolid nudibranch Spurilla neapolitana. Mar Biol (Berl) 80:35–38. doi: CrossRefGoogle Scholar
  8. Greenwood PG, Mariscal RN (1984b) The utilization of cnidarian nematocysts by aeolid nudibranchs: nematocyst maintenance and release in Spurilla. Tissue Cell 16:719–730. doi: CrossRefGoogle Scholar
  9. Grosvenor GH (1903) On the nematocysts of aeolids. Proc R Soc Lond 72:462–486. doi: Google Scholar
  10. Harris LG (1973) Nudibranch associations. In: Cheng TC (ed) Current topics in comparative pathobiology, vol II. Academic Press, New York, pp 213–315Google Scholar
  11. Harris LG (1987) Aeolid nudibranchs as predators and prey. Am Malacol Bull 5:287–292Google Scholar
  12. Herdman WA (1890) Some experiments on feeding fishes with nudibranchs. Nature 42:201–203. doi: CrossRefGoogle Scholar
  13. Kälker H, Schmekel L (1976) Bau und Funktion des Cnidosacks der Aeolidoidea (Gastropoda: Nudibranchia). Zoomorphologie 86:41–60. doi: CrossRefGoogle Scholar
  14. Klussmann-Kolb A, Wägele H (2005) Opisthobranchia (Mollusca, Gastropoda)-more than just slimy slugs. Shell reduction and its implications on defence and foraging. Front Zool 2:3. doi: CrossRefGoogle Scholar
  15. MacFarland FM (1923) The morphology of the nudibranch genus Hancockia. J Morphol 38:65–104. doi: CrossRefGoogle Scholar
  16. Martin R (2003) Management of nematocysts in the alimentary tract and in cnidosacs of the aeolid nudibranch gastropod Cratena peregrina. Mar Biol (Berl) 143:533–541. doi: CrossRefGoogle Scholar
  17. Martin R, Walther P (2002) Effects of discharging nematocysts when an eolid nudibranch feeds on a hydroid. J Mar Biol Assoc UK 82:455–462. doi: CrossRefGoogle Scholar
  18. Martin R, Hild S, Walther P, Ploss K, Boland W, Tomaschko KH (2007a) Granular chitin in the epidermis of nudibranch molluscs. Biol Bull 213:307–315CrossRefGoogle Scholar
  19. Martin R, Tomaschko KH, Walther P (2007b) Protective skin structures in shell-less marine gatropods. Mar Biol (Berl) 150:807–817. doi: CrossRefGoogle Scholar
  20. Miller JA, Byrne M (2000) Ceratal autotomy and regeneration in the aeolid nudibranch Phidiana crassicornis and the role of predators. Invertebr Biol 119:167–176CrossRefGoogle Scholar
  21. Morse MP (1971) Biology and life history of the nudibranch mollusc Coryphella stimpsoni (Verrill 1879). Biol Bull 140:84–94. doi: CrossRefGoogle Scholar
  22. Rousseau C (1935) Histophysiologie du foie des éolidiens. Étude de leurs xanthelles. Cytologie des cellules nématophages. Arch Anat Micr 31:305–395Google Scholar
  23. Rudman WB (1981) Polyp mimicry in a new species of aeolid nudibranch mollusc. J Zool 193:421–427CrossRefGoogle Scholar
  24. Schmekel L, Portmann A (1982) Opisthobranchia des Mittelmeeres. Nudibranchia und Saccoglossa. In: Fauna e Flora del Golfo di Napoli. 40 Monografia della Stazione Zoologica di Napoli. Springer, Berlin, pp 1–410Google Scholar
  25. Schrödl M (1999) Hancockia schoeferti, spec. nov., a new dendronotoidean nudibranch species from central Chile. Spixiana 22:247–254Google Scholar
  26. Streble H (1967) Bau und Bedeutung der Nesselsäcke von Aeolidia papillosa L., der breitwarzigen Fadenschnecke (Gastropoda, Opisthobranchia). Zool Anz 180:356–372Google Scholar
  27. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4b. Sinauer Associates, SunderlandGoogle Scholar
  28. Thompson TE (1972) Eastern Australian Dendronotoidea (Gastropoda, Opisthobranchia). Zool J Linn Soc 51:63–77. doi: CrossRefGoogle Scholar
  29. Wägele H, Willan RC (2000) Phylogeny of Nudibranchia. Zool J Linn Soc 130:83–181. doi: CrossRefGoogle Scholar
  30. Wolter H (1967) Beiträge zur Biologie, Histologie und Sinnesphysiologie (insbesondere der Chemorezeptoren) einiger Nudibranchier (Mollusca, Opisthobranchia) der Nordsee. Z Morphol Oekol Tiere 60:275–337. doi: CrossRefGoogle Scholar
  31. Wright, TS (1858–1861) On the cnidae or thread-cells of the Eolidae. Proc R Phys Soc Edinburgh, Sessions 1858–1861Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Rainer Martin
    • 1
    Email author
  • Martin Heß
    • 2
  • Michael Schrödl
    • 3
  • Karl-Heinz Tomaschko
    • 4
  1. 1.Central Electron Microscopy FacilityUniversity of UlmUlmGermany
  2. 2.Biozentrum der Ludwig-Maximilians-Universität MünchenPlaneggGermany
  3. 3.Zoologische Staatssammlung MünchenMunichGermany
  4. 4.Akademie für Gesundheitsberufe, UniversitätsklinikumUlmGermany

Personalised recommendations