Marine Biology

, 156:179

Ranging patterns of bottlenose dolphins living in oceanic waters: implications for population structure

  • Mónica A. Silva
  • Rui Prieto
  • Sara Magalhães
  • Maria I. Seabra
  • Ricardo S. Santos
  • Philip S. Hammond
Original Paper


Very little is known about the ecology of common bottlenose dolphins (Tursiops truncatus) living in oceanic waters. This study investigated the ranging and residence patterns of bottlenose dolphins occurring in the Azores (Portugal), the most isolated archipelago in the North Atlantic. Data were collected during standardized boat-based surveys conducted over a 6-year period in an area of approximately 5,400 km2 (main study area). To investigate the extent of movements of individual animals, non-systematic surveys were also conducted outside this area. Only 44 individuals out of 966 identified were frequently sighted within and between years. The remaining individuals were either temporary migrants from within or outside the archipelago, or transients. Resident dolphins showed strong geographic fidelity to the area. Long-distance movements (of almost 300 km), consistent with foraging or exploratory trips, were observed among non-resident dolphins. Home range size was estimated for 31 individuals sighted ≥10 times. Range areas of these dolphins varied in size and location, but considerable overlap was observed in the areas used, suggesting the absence of habitat partitioning between resident and non-resident dolphins. Estimates of home range size of bottlenose dolphins in the Azores were found to be considerably larger than those previously reported for this species. It is hypothesized that dolphins living in the Azores carry out extensive movements and have large home ranges in response to the lower density and patchy distribution of prey compared to other areas. The extensive ranging behaviour and the lack of territoriality provide an opportunity for interbreeding between dolphins associated with different islands, thus preventing genetic differentiation within the population of the Azores.


  1. Baird RW, Ligon AD, Hooker SK, Gorgone AM (2001) Subsurface and nighttime behaviour of pantropical spotted dolphins in Hawai’i. Can J Zool 79:988–996. doi:10.1139/cjz-79-6-988 CrossRefGoogle Scholar
  2. Baird RW, Gorgone AM, Webster DL (2002) An examination of movements of bottlenose dolphins between islands in the Hawaiian island chain. Report prepared under contract #40JGNF110270 to the Southwest Fisheries Science Center, National Marine Fisheries Service, La JollaGoogle Scholar
  3. Ballance LT (1992) Habitat use patterns and ranges of the bottlenose dolphin in the Gulf of California, Mexico. Mar Mamm Sci 8:262–274. doi:10.1111/j.1748-7692.1992.tb00408.x CrossRefGoogle Scholar
  4. Barton ED, Basterretxea G, Flament P, Mitchelson E, Jacob E, Jones B, Arlistegui J, Herrera F (2000) Lee region of Gran Canaria. J Geophys Res C 105:17173–17193. doi:10.1029/2000JC900010 CrossRefGoogle Scholar
  5. Benoit-Bird KJ, Au WWL (2003) Prey dynamics affect foraging by a pelagic predator (Stenella longirostris) over a range of spatial and temporal scales. Behav Ecol Sociobiol 53:364–373Google Scholar
  6. Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 30:25–27. doi:10.2307/1375192 CrossRefGoogle Scholar
  7. Caldeira RMA, Groom S, Miller P, Pilgrim D, Nezlin NP (2002) Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens Environ 80:336–360. doi:10.1016/S0034-4257(01)00316-9 CrossRefGoogle Scholar
  8. Clutton-Brock TH (1989) Mammalian mating systems. Proc R Soc Lond B Biol Sci 236:1–39CrossRefGoogle Scholar
  9. Connor RC, Wells RS, Mann J, Read AJ (2000) The bottlenose dolphin: social relationships in a fission-fusion society. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. The University of Chicago Press, Chicago and London, pp 91–126Google Scholar
  10. Damuth J (1981) Home range, home range overlap, and species energy use among herbivorous mammals. Biol J Linn Soc Lond 15:185–193. doi:10.1111/j.1095-8312.1981.tb00758.x CrossRefGoogle Scholar
  11. Defran RH, Weller DW, Kelly DL, Espinosa MA (1999) Range characteristics of Pacific coast bottlenose dolphins (Tursiops truncatus) in the Southern California Bight. Mar Mamm Sci 15:381–393. doi:10.1111/j.1748-7692.1999.tb00808.x CrossRefGoogle Scholar
  12. Fisher DO, Owens IPF (2000) Female home range size and the evolution of social organization in macropods marsupials. J Anim Ecol 69:1083–1098. doi:10.1046/j.1365-2656.2000.00450.x CrossRefGoogle Scholar
  13. Ford RG (1983) Home range in a patchy environment: optimal foraging predictions. Am Zool 23:315–326Google Scholar
  14. Gaustestad AO, Mysterud I (1995) The home range ghost. Oikos 74:195–204. doi:10.2307/3545648 CrossRefGoogle Scholar
  15. Genin A (2004) Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J Mar Syst 50:3–20. doi:10.1016/j.jmarsys.2003.10.008 CrossRefGoogle Scholar
  16. Gubbins C (2002) Use of home ranges by resident bottlenose dolphins (Tursiops truncatus) in a South Carolina estuary. Aquat Mamm 83:178–187Google Scholar
  17. Herfindal I, Linnell JDC, Odden J, Birkeland Nilsen E, Andersen R (2005) Prey density, environmental productivity and home-range size in the Eurasian lynx (Lynx lynx). J Zool (Lond) 265:63–71. doi:10.1017/S0952836904006053 CrossRefGoogle Scholar
  18. Hooge PN, Eichenlaub B (1997) Animal movement extension to arcview. ver. 1.1. Alaska Science Center—Biological Science Office, U.S. Geological Survey, AnchorageGoogle Scholar
  19. Ingram SN, Rogan E (2002) Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar Ecol Prog Ser 244:247–255. doi:10.3354/meps244247 CrossRefGoogle Scholar
  20. Irvine AB, Scott MD, Wells RS, Kaufmann JH (1981) Movements and activities of the Atlantic bottlenose dolphin, Tursiops truncatus, near Sarasota, Florida. Fish Bull (Wash D C) 79:671–688Google Scholar
  21. Karczmarski L, Würsig B, Gailey G, Larson KW, Vanderlip C (2005) Spinner dolphins in a remote Hawaiian atoll: social grouping and population structure. Behav Ecol 16:675–685. doi:10.1093/beheco/ari028 CrossRefGoogle Scholar
  22. Kernohan BJ, Gitzen RA, Millspaugh JJ (2001) Analysis of animal space use and movements. In: Millspaugh JJ, Marzluff JM (eds) Radio tracking and animal populations. Academic Press, Sand Diego, pp 125–166CrossRefGoogle Scholar
  23. Krützen M, Sherwin WB, Berggren P, Gales N (2004) Population structure in an inshore cetacean revealed by microsatellite and mtDNA analysis: bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia. Mar Mamm Sci 20:28–47. doi:10.1111/j.1748-7692.2004.tb01139.x CrossRefGoogle Scholar
  24. Lusseau D, Wilson B, Hammond PS, Grellier K, Durban JW, Parsons KM, Barton TR, Thompson PM (2006) Quantifying the influence of sociality on population structure in bottlenose dolphins. J Anim Ecol 75:14–24. doi:10.1111/j.1365-2656.2005.01013.x PubMedCrossRefGoogle Scholar
  25. Lynn SK (1995) Movements, site fidelity, and surfacing patterns of bottlenose dolphins on the central Texas coast. MS Thesis, Texas A&M UniversityGoogle Scholar
  26. Mann J, Smuts B (1999) Behavioral development in wild bottlenose dolphin newborns (Tursiops sp.). Behaviour 136:529–566. doi:10.1163/156853999501469 CrossRefGoogle Scholar
  27. McLoughlin PD, Ferguson SH (2000) A hierarchical pattern of limiting factor helps explain variation in home range size. Ecoscience 7:123–130Google Scholar
  28. McNab BK (1963) Bioenergetics and the determination of home range size. Am Nat 894:133–140. doi:10.1086/282264 CrossRefGoogle Scholar
  29. Mohr CO (1947) Table of equivalent populations of North American small mammals. Am Midl Nat 37:223–249. doi:10.2307/2421652 CrossRefGoogle Scholar
  30. Norris KS, Dohl TP (1980) The structure and functions of cetacean schools. In: Herman LM (ed) Cetacean behaviour: mechanisms and function. Wiley, USA, pp 211–261Google Scholar
  31. Owen ECG, Wells RS, Hofmann S (2002) Ranging and association patterns of paired and unpaired adult male Atlantic bottlenose dolphins, Tursiops truncatus, in Sarasota, Florida, provide no evidence for alternative male strategies. Can J Zool 80:2072–2089. doi:10.1139/z02-195 CrossRefGoogle Scholar
  32. Palacios DM (2002) Factors influencing the island-mass effect of the Galápagos Archipelago. Geophys Res Lett 29:2134–2138. doi:10.1029/2002GL016232 CrossRefGoogle Scholar
  33. Quérouil S, Silva MA, Freitas L, Prieto R, Magalhães S, Dinis A, Alves F, Matos JA, Mendonça D, Hammond P, Santos RS (2007) High gene flow in oceanic bottlenose dolphins (Tursiops truncatus) of the North Atlantic. Conserv Genet 8:1405–1419. doi:10.1007/s10592-007-9291-5 CrossRefGoogle Scholar
  34. Sandell M (1989) The mating tactics and spacing behaviour of solitary carnivores. In: Gittleman JL (ed) Carnivore behaviour, ecology and evolution. New York, Cornell University Press, pp 164–182Google Scholar
  35. Santos RS, Hawkins S, Monteiro LR, Alves M, Isidro E (1995) Marine research, resources and conservation in the Azores. Aquat Conserv Mar Freshw Ecosyst 5:311–354. doi:10.1002/aqc.3270050406 CrossRefGoogle Scholar
  36. Schoener TW (1981) An empirically based estimate of home range. Theor Popul Biol 20:281–325. doi:10.1016/0040-5809(81)90049-6 CrossRefGoogle Scholar
  37. Scott MD, Wells RS, Irvine AB (1990) A long-term study of bottlenose dolphins on the west coast of Florida. In: Leatherwood S, Reeves RR (eds) The bottlenose dolphin. Academic Press, San Diego, pp 235–244Google Scholar
  38. Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA (1999) Effects of sample size on kernel home range estimates. J Wildl Manage 63:739–747. doi:10.2307/3802664 CrossRefGoogle Scholar
  39. Shane SH (2004) Residence patterns, group characteristics, and association patterns of bottlenose dolphins near Sanibel Island, Florida. Gulf Mex Sci 1:1–12Google Scholar
  40. Silva MA (2007) Population biology of bottlenose dolphins in the Azores Archipelago. PhD thesis, University of St AndrewsGoogle Scholar
  41. Silva MA, Prieto R, Magalhães S, Cabecinhas R, Cruz A, Gonçalves JM, Santos RS (2003) Occurrence and distribution of cetaceans in the waters around the Azores (Portugal), Summer and Autumn 1999–2000. Aquat Mamm 29:77–83. doi:10.1578/016754203101024095 CrossRefGoogle Scholar
  42. Stevick PT, McConnell BJ, Hammond PS (2002) Patterns of movement. In: Hoelzel AR (ed) Marine mammal biology: an evolutionary approach. Blackwell Publishing, Oxford, pp 185–216Google Scholar
  43. Swihart RK, Slade NA (1997) On testing for independence of animal movements. J Agric Biol Environ Stat 2:48–63. doi:10.2307/1400640 CrossRefGoogle Scholar
  44. Swihart RK, Slade NA, Bergstrom BJ (1988) Relating body size to the rate of home range use in mammals. Ecology 69:393–399. doi:10.2307/1940437 CrossRefGoogle Scholar
  45. Tempera F, Afonso P, Morato T, Prieto R, Silva M, Cruz A, Gonçalves J, Santos RS (2001) Comunidades biológicas marinhas dos Sítios de Interesse Comunitário do Canal Faial-Pico. Arquivos do DOP. Ser Relatorio Internos 5:1–95Google Scholar
  46. Urian KW (2002) Community structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida, USA. MS thesis, University of North CarolinaGoogle Scholar
  47. Walton MJ, Silva MA, Magalhães S, Prieto R, Santos RS (2007) Using blubber biopsies to provide ecological information about bottlenose dolphins Tursiops truncatus around the Azores. J Mar Biol Assoc U K 87:223–230. doi:10.1017/S0025315407054537 CrossRefGoogle Scholar
  48. Wells RS, Irvine AB, Scott MD (1980) The social ecology of inshore odontocetes. In: Herman LM (ed) Cetacean behaviour: mechanisms and function. Wiley, New YorkGoogle Scholar
  49. Wells RS, Scott MD, Irvine AB (1987) The social structure of free-ranging bottlenose dolphins. In: Genoways H (ed) Current mammalogy. Plenum Press, New York, pp 247–305Google Scholar
  50. White GC, Garrott RA (eds) (1990) Analysis of wildlife radio-tracking data. Academic Press, San DiegoGoogle Scholar
  51. Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst 7:81–120. doi:10.1146/ CrossRefGoogle Scholar
  52. Wilson B, Thompson PM, Hammond PS (1997) Habitat use by bottlenose dolphins: seasonal distribution and stratified movement patterns in the Moray Firth, Scotland. J Appl Ecol 34:1365–1374. doi:10.2307/2405254 CrossRefGoogle Scholar
  53. Wilson B, Hammond PS, Thompson PM (1999) Estimating size and assessing trends in a coastal bottlenose dolphin population. Ecol Appl 9:288–300. doi:10.1890/1051-0761(1999)009[0288:ESAATI]2.0.CO;2 CrossRefGoogle Scholar
  54. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi:10.2307/1938423 CrossRefGoogle Scholar
  55. Würsig B, Jefferson TA (1990) Methods of photo-identification for small cetaceans. Rep Int Whal Comm Spec Issue 12:43–52Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mónica A. Silva
    • 1
    • 2
    • 3
  • Rui Prieto
    • 2
  • Sara Magalhães
    • 2
  • Maria I. Seabra
    • 2
  • Ricardo S. Santos
    • 2
  • Philip S. Hammond
    • 1
  1. 1.Sea Mammal Research Unit, Gatty Marine LaboratoryUniversity of St AndrewsSt AndrewsScotland, UK
  2. 2.Departamento de Oceanografia e PescasCentro do Instituto do Mar (IMAR) da Universidade dos AçoresHortaPortugal
  3. 3.Biology Department, MS#33Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations