Advertisement

Marine Biology

, Volume 156, Issue 2, pp 155–169 | Cite as

Sterol production and phytosterol bioconversion in two species of heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans

  • Fu-Lin Evelyn Chu
  • Eric D. Lund
  • Paul R. Littreal
  • Kate E. Ruck
  • Ellen Harvey
  • Jean-René Le Coz
  • Yanic Marty
  • Jeanne Moal
  • Philippe Soudant
Original Paper

Abstract

The kinetics and efficiency of sterol production and bioconversion of phytosterols in two heterotrophic protists Oxyrrhis marina and Gyrodinium dominans were examined by feeding them two different algal species (Rhodomonas salina and Dunaliella tertiolecta) differing in sterol profiles. R. salina contains predominantly brassicasterol (≅99%) and <2% cholesterol. The major sterols in D. tertiolecta are ergosterol (45–49%), 7-dehydroporiferasterol (29–31%) and fungisterol (21–26%). O. marina fed R. salina metabolized dietary brassicasterol to produce 22-dehydrocholesterol and cholesterol. O. marina fed D. tertiolecta metabolized dietary sterols to produce cholesterol, 22-dehydrocholesterol, brassicasterol and stigmasterol. G. dominans fed either R. salina or D. tertiolecta metabolized dietary sterols to make cholesterol, brassicasterol and a series of unknown sterols. When protists were fed R. salina, which contains cholesterol, the levels of cholesterol were increased to a magnitude of nearly 5- to 30-fold at the phytoplankton-heterotrophic protist interface, equivalent to a production of 172.5 ± 16.2 and 987.7 ± 377.7 ng cholesterol per mg R. salina carbon consumed by O. marina and G. dominans, respectively. When protists were fed D. tertiolecta, which contains no cholesterol, a net production of cholesterol by the protists ranged from 123.2 ± 30.6 to 871.8 ± 130.8 ng per mg algal C consumed. Cholesterol is not only the dominant sterol, but a critical precursor for many physiologically functional biochemicals in higher animal. As intermediates, these heterotrophic protists increase the amount of cholesterol at the phytoplankton–zooplankton interface available to higher trophic levels relative to zooplankton feeding on algae directly.

Keywords

Ergosterol Phytosterol Stigmasterol Desmosterol Sterol Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by OCE, NSF (award #:0525899). The authors are grateful for Jenny Dryer’s help on the analysis of protist and algal carbon content. Contribution no. 2973 by the Virginia Institute of Marine Science, College of William and Mary.

References

  1. Ackman RG (1989) Nutritional composition of fats in seafoods. Prog Food Nutr Sci 13:161–241PubMedGoogle Scholar
  2. Adolf JE, Krupatkina D, Bachvaroff T, Place AR (2007) Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium venificum. Harmful Algae 6:400–412CrossRefGoogle Scholar
  3. Ballantine JA, Roberts JC, Morris RJ (1980) Marine sterols: the sterols of some pelagic marine crustaceans. J Exp Mar Biol Ecol 47:25–33CrossRefGoogle Scholar
  4. Bec A, Desvilettes C, Vera A, Lemarchand C, Fontvielle D, Bourdier G (2003) Nutritional quality of a freshwater heterotrophic dinoflagellate: trophic upgrading of its microalgal diet for Daphnia hyalina. Aquat Microb Ecol 32:203–207CrossRefGoogle Scholar
  5. Bec A, Martin-Creuzburg D, Von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707CrossRefGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  7. Boechat IG, Adrian R (2005) Biochemical composition of algivorous freshwater ciliates: you are not what you eat. FEMS Microbiol Ecol 53:393–400CrossRefGoogle Scholar
  8. Bollens GCR, Penry DL (2003) Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Mar Ecol Progr Ser 257:139–158CrossRefGoogle Scholar
  9. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429CrossRefGoogle Scholar
  10. Broglio E, Jonasdottir SH, Calbet A, Jakobsen HH, Saiz E (2003) Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat Microb Ecol 31:267–278CrossRefGoogle Scholar
  11. Bruckdorfer KR, Demel RA, De Gier J, Van Deenen LLM (1969) The effect of partial replacement of membrane cholesterol by other sterols on the osmotic fragility and glycerol permeability of erythrocytes. Biochim Biophys Acta 183:334–345CrossRefGoogle Scholar
  12. Chu F-LE, Lund ED, Podbesek JA (2008) Quantitative significance of n–3 essential fatty acid contribution by heterotrophic protists and its ecological implication in marine pelagic food webs. Mar Ecol Prog Ser 354:85–95CrossRefGoogle Scholar
  13. Crockett EL (1998) Cholesterol function in plasma membranes from ectotherms: membrane- specific roles in adaptation to temperature. Am Zool 38:291–304CrossRefGoogle Scholar
  14. Crockett EL, Hassett A (2005) Cholesterol-enriched diet enhances egg production and egg viability without altering cholesterol content of biological membranes in the copepod Acartia hudsonica. Physiol Biochem Zool 78:424–433CrossRefGoogle Scholar
  15. Demel RA, Bruckendorf KR, Van Deenen LLM (1972) The effect of sterol structure on permeability of liposomes to glucose, glycerol and Rb+. Biochim Biophys Acta 255:321–330CrossRefGoogle Scholar
  16. Ederington MC, McManus GB, Harvey HR (1995) Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol Oceanogr 40:860–867CrossRefGoogle Scholar
  17. Fingerman M (1987) The endocrine mechanisms of crustaceans. J Crustacean Biol 7:1–24CrossRefGoogle Scholar
  18. Finkelstein A, Cass A (1967) Effect of cholesterol on the water permeability of thin lipid membranes. Nature 216:717CrossRefGoogle Scholar
  19. Gealt MA, Adler JH, Nes WR (1981) The sterols and fatty acids from purified flagella of Chlamydomonas reinhardi. Lipids 16:133–136CrossRefGoogle Scholar
  20. Ghosh P, Patterson GW, Wikfors GH (1998) Sterols of some marine Prymnesiophyceae. J Phycol 34:511–514CrossRefGoogle Scholar
  21. Gifford SM, Rollwagen-Bollens G, Bollens SM (2007) Mesozooplankton omnivory in the upper San Francisco Estuary. Mar Ecol Prog Ser 348:33–46CrossRefGoogle Scholar
  22. Goad LJ, Holz GG, Beach DH (1983) Identification of (24 s) 24-methylcholesta-5, 22-diene-3Β-ol as the major sterol of a marine cryptophyte and a marine prymnesiophyte. Phytochemistry 22:475–476CrossRefGoogle Scholar
  23. Goodwin TW (1980) Biosynthesis of sterols. In: Stumpf PK (ed) The biochemistry of plants, vol 4. Academic Press, New York NY, pp 485–507Google Scholar
  24. Gurr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry, 5th edn. Blackwell Sciences Inc, MaldenCrossRefGoogle Scholar
  25. Harvey HR, Ederington MC, McManus GB (1997) Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: Shifts in response to changes in diet. J Eukaryot Microbiol 44:189–193CrossRefGoogle Scholar
  26. Hassett RP (2004) Supplementation of a diatom diet with cholesterol can enhance copepod egg-production rates. Limnol Oceanogr 49:488–494CrossRefGoogle Scholar
  27. Kanazawa A (2001) Sterols in marine invertebrates. Fisheries Sci 67:997–1007CrossRefGoogle Scholar
  28. Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198CrossRefGoogle Scholar
  29. Klein Breteler WCM, Koski M, Rampen S (2004) Role of essential lipids in copepod nutrition: no evidence of trophic upgrading of food quality by a marine ciliate. Mar Ecol Prog Ser 274:199–208CrossRefGoogle Scholar
  30. Klein Breteler WCM, Schogt N, Rampen S (2005) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser 291:125–133CrossRefGoogle Scholar
  31. Leblond JD, Chapman PJ (2002) A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class Dinophyceae. J Phycol 38:670–682CrossRefGoogle Scholar
  32. Leblond JD, Chapman PJ (2004) Sterols of the heterotrophic dinoflagellate, Pfiesteria piscicida (Dinophyceae): is there a lipid biomarker? J Phycol 40:104–111CrossRefGoogle Scholar
  33. Leblond JD, Sengco MR, Sickman JO, Dahmen JL, Anderson DM (2006) Sterols of the syndinian dinoflagellate Amoebophrya sp., a parasite of the dinoflagellate Alexandrium tamarense (Dinophyceae). J Eukaryot Microbiol 53:211–216CrossRefGoogle Scholar
  34. Lund ED, Chu F-LE, Harvey E, Adolf R (2008) Mechanism(s) of long chain n-3 essential fatty acid production in two species of heterotrophic protists: Oxyrrhis marina and Gyrodinium dominans. Mar Biol 155:23–36CrossRefGoogle Scholar
  35. Martin-Creuzburg D, Von Elert E (2004) Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata. J Chem Ecol 30:483–500CrossRefGoogle Scholar
  36. Martin-Creuzburg D, Bec A, Von Elert E (2005a) Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat Microb Ecol 41:271–280CrossRefGoogle Scholar
  37. Martin-Creuzburg D, Wacker A, Von Elert E (2005b) Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia 144:362–372CrossRefGoogle Scholar
  38. Martin-Creuzburg D, Bec A, Von Elert E (2006) Supplementation with sterols improves food quality of a ciliate for Daphnia magna. Protist 157:477–486CrossRefGoogle Scholar
  39. Martin-Creuzburg D, Von Elert E, Hoffmann K (2008) Nutritional constraints at the cyanobacteria-Daphnia magna interface: The role of sterols. Limnol Oceanogr 53:456–468CrossRefGoogle Scholar
  40. Merrell JR, Stoecker DK (1998) Differential grazing on protozoan microplankton by developmental stages of the calanoid copepod Eurytemora affinis. J Plankton Res 20:289–304CrossRefGoogle Scholar
  41. Ohman MD, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short supply: Omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol Oceanogr 39:21–36CrossRefGoogle Scholar
  42. Patterson GW, Gladu PK, Wikfors GH, Lusby WR (1992) Unusual tetraene sterols in some phytoplankton. Lipids 27:154–156CrossRefGoogle Scholar
  43. Prahl FG, Eglinton G, Corner EDS, O’Hara SCM, Forsberg TEV (1984) Changes in plant lipids during passage through the gut of Calanus. J Mar Biol Ass UK 64:317–334CrossRefGoogle Scholar
  44. Smith WJ, Marra J, Hiscock M, Barber R (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea. Antarctica Deep Sea Res (II Top Stud Oceanogr) 47:3119–3140CrossRefGoogle Scholar
  45. Soudant P, Marty Y, Moal J, Robert R, Quere C, Le Coz JR, Samain JF (1996) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143:361–378CrossRefGoogle Scholar
  46. Soudant P, Le Coz JR, Marty Y, Moal J, Robert R, Samain JF (1998) Incorporation of microalgae sterols by scallop Pecten maximus (L.) larvae. Comp Biochem Physiol 119A:451–457CrossRefGoogle Scholar
  47. St. John MA, Lund T (1996) Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile North Sea cod. Mar Ecol Prog Ser 131:75–85CrossRefGoogle Scholar
  48. St. John MA, Clemmesen C, Lund T, Koester T (2001) Diatom production in the marine environment: implications for larval fish growth and condition. ICES J Mar Sci 58:1106–1113CrossRefGoogle Scholar
  49. Tang K, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98CrossRefGoogle Scholar
  50. Veloza AJ, Chu F-E, Tang KW (2006) Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar Biol 148:779–788CrossRefGoogle Scholar
  51. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506CrossRefGoogle Scholar
  52. Von Elert E, Martin-Creuzburg D, Le Coz JR (2003) Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc R Soc London B 270:1209–1214CrossRefGoogle Scholar
  53. Zelazny AM, Shaish A, Pick U (1995) Plasma membrane sterols are essential for sensing osmotic changes in the halotolerant alga Dunaliella. Plant Physiol 109:1395–1403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fu-Lin Evelyn Chu
    • 1
  • Eric D. Lund
    • 1
  • Paul R. Littreal
    • 1
  • Kate E. Ruck
    • 1
  • Ellen Harvey
    • 1
  • Jean-René Le Coz
    • 2
  • Yanic Marty
    • 3
  • Jeanne Moal
    • 2
  • Philippe Soudant
    • 4
  1. 1.Virginia Institute of Marine ScienceCollege of William & MaryGloucester PointUSA
  2. 2.IFREMERPlouzanéFrance
  3. 3.Université de Bretagne Occidentale, UMR/CNRS 6521, CS 93837Brest Cedex 3France
  4. 4.Institut Universitaire Européen de la MerUniversité de Bretagne OccidentalePlouzanéFrance

Personalised recommendations