Marine Biology

, Volume 156, Issue 1, pp 79–95 | Cite as

Feeding behavior of adult Vinciguerria nimbaria (Phosichthyidae), in the tropical Atlantic (0°–4°N, 15°W)

  • Gisèle Amélie ChampalbertEmail author
  • Basile Kouamé
  • Marc Pagano
  • Emile Marchal
Original Paper


Adult Vinciguerria nimbaria are the main prey of tuna during the tuna fishing season (late autumn and winter) in the equatorial Atlantic (0–4°N, and ~15°W). V. nimbaria trophic behavior in the fishing grounds was studied in relation to hydrobiological factors to determine its role in the trophic food web. Sampling stations spaced by 20 nautical miles were set up along a 15°W north–south transect from 4°N to 0°40S. At each station, the temperature and vertical fluorescence profiles were recorded. Nitrate and chlorophyll a analyses were performed on water sampled at different levels in the euphotic zone. Vertical plankton hauls were carried out at depths of 0–100 and 0–200 m using a standard WP2 net fitted with a 200-μm mesh gauze. Vinciguerria nimbaria adults were collected using a young-fish mid-water trawl net (10 × 15 m opening mouth, 10 mm cod end mesh). The weight of the stomach contents, the stomach fullness index, the number of prey, the frequency of occurrence and the prey preponderance were recorded for 20 fish from each haul. An oligotrophic typical tropical structure (TTS) was found between 1° and 4°N where small zooplankton was relatively abundant above or near the thermocline. In the TTS, V. nimbaria behaved as an epipelagic fish, feeding on the dominant small prey during the daytime. In turn, it was a prey for tuna. In the equatorial zone, where zooplankton was more abundant than in the north equatorial zone, V. nimbaria behaved as a mesopelagic fish and as an opportunistic mesozooplankton feeder. It consumed a wide range of sizes of food, feeding on the most abundant species of zooplankton as well as the largest zooplankton species, possibly while migrating towards the surface in the late afternoon or in the deep layer.


Total Zooplankton Equatorial Zone Tuna Fishing Mesopelagic Fish Small Copepod 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is a part of a research program PICOLO granted by the Institut de Recherche pour le Développement. The authors would like to thank the referees for their valuable comments and suggestions on the manuscript.


  1. Baird R, Hopkins TL, Wilson DF (1975) Diet and feeding chronology of Diaphus taaningi (Myctophidae) in the Cariaco trench. Copeia 2:356–365CrossRefGoogle Scholar
  2. Batty RS, Blaxter JHS, Richard JM (1990) Light intensity and the feeding behaviour of herring Clupea harengus. Mar Biol (Berl) 107:383–388. doi: CrossRefGoogle Scholar
  3. Berg J (1979) Discussion of methods of investigating the food of fishes with reference to a preliminary study of Gobiusculus flavescens. Mar Biol (Berl) 50:263–273. doi: CrossRefGoogle Scholar
  4. Binet D (1993) Zooplancton néritique de Côte d’Ivoire. In: Le Loeuff P, Marchal E, Amon Kothias JB (eds) Environnement et Ressources aquatiques de Côte d’Ivoire; I. Le milieu marin. Editions de l’ORSTOM, Paris, pp 167–193Google Scholar
  5. Champalbert G, Pagano M (2002) Copepod feeding in a tuna fishery area of the tropical Atlantic Ocean. C R Acad Sci 325:171–177Google Scholar
  6. Champalbert G, Pagano M, Kouame B, Riandey V (2005) Zooplankton spatial and temporal distribution in a tropical oceanic area off West Africa. Hydrobiologia 548:251–265. doi: CrossRefGoogle Scholar
  7. Clarke TA (1974) Some aspects of the ecology of stomiatoid fishes in the Pacific Ocean near Hawaii. Fish Bull (Wash DC) 7:337–351Google Scholar
  8. Clarke TA (1978) Diel feeding patterns of 16 species of mesopelagic fishes from Hawaiian waters. Fish Bull (Wash DC) 76:495–513Google Scholar
  9. Clarke TA (1980) Diet of fourteen species of vertically migrating mesopelagic fishes in Hawaian waters. Fish Bull (Wash DC) 78:619–640Google Scholar
  10. Clarke TA (1982) Feeding habits of stomiatoid fishes from Hawaiian waters. Fish Bull (Wash DC) 80:287–304Google Scholar
  11. Dalpadado P, Gjǿsæter J (1988) Feeding ecology of the lanterfish Benthosema pterotum from the Indian Ocean. Mar Biol (Berl) 99:555–567. doi: CrossRefGoogle Scholar
  12. Finenko ZZ, Piontkovski SA, Williams R, Mishonov AV (2003) Variability of phytoplankton and mesozooplankton biomass in the subtropical and tropical Atlantic Ocean. Mar Ecol Prog Ser 250:125–144. doi: CrossRefGoogle Scholar
  13. Forward RB (1988) Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr Mar Biol Ann Rev 26:361–393Google Scholar
  14. Frontier S, Pichod-Viale D (1998) Ecosystèmes: structure–fonctionnement–évolution 2ème édition. Dunod, ParisGoogle Scholar
  15. Fulton TW (1904) The rate of growth of fishes. In: 22nd annual report of the fishery Board of Scotland, vol 3, pp 141–241Google Scholar
  16. Gibson RN, Ezzi IA (1990) Effect of particle concentration on filter and particulate feeding in the herring Clupea harengus. Mar Biol (Berl) 88:109–116. doi: CrossRefGoogle Scholar
  17. Gorbunova NN (1982) Breeding and distribution conditions for larvae of the species Vinciguerria (Pisces, Gonostomatidae) in the Indian Ocean. Okeanology 22:276–280Google Scholar
  18. Greze VN, Gordejava KT, Shmeleva AA (1969) Distribution of zooplankton and biological structure in the tropical Atlantic. In: UNESCO (ed) Proceedings of the symposium on the oceanography and fisheries resources of the tropical Atlantic, pp 85–90Google Scholar
  19. Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503(1–3):163–170. doi: CrossRefGoogle Scholar
  20. Herbland A, Voituriez B (1979) Hydrological structure analysis for estimating the primary production in the tropical Atlantic ocean. J Mar Res 37:87–101Google Scholar
  21. Herbland A, Le Borgne R, Le Bouteiller A, Voituriez B (1983) Structure hydrologique et production primaire dans l’Atlantique tropical oriental. Oceanogr Trop 18:249–293Google Scholar
  22. Hobaek A, Wolf HG (1991) Ecological genetics of norwegian Daphnia. II Distribution of Daphnia longispina genotypes in relation to short waves radiations and water colour. Hydrobiologia 225:229–243. doi: CrossRefGoogle Scholar
  23. Hopkins TL, Baird RC (1975) Net feeding in mesopelagic fishes. Fish Bull (Wash DC) 73:908–914Google Scholar
  24. Hopkins TL, Baird RC (1977) Aspects of the feeding ecology of Oceanic midwater fishes. In: Andersen NR, Zahuranec BJ (eds) Oceanic sound scattering prediction. Plenum Press, New York, pp 325–360Google Scholar
  25. Hopkins TL, Baird RC (1985) Feeding ecology of four hatchefishes (Sternoptychidae) in the eastern Gulf of Mexico. Bull Mar Sci 36:260–277Google Scholar
  26. Hopkins TL, Sutton TT (1998) Midwater fishes and shrimps as competitors and resource partitioning in low latitude oligotrophic ecosystems. Mar Ecol Prog Ser 164:37–45. doi: CrossRefGoogle Scholar
  27. James AG (1987) Feeding ecology, diet and field based studies on feeding selectivity of the Cape Anchovy Engraulis capensis Gilchrist. In: Payne AIL, Gulland JA, Brink KH (eds) The Benguela and comparable ecosystems. South African Journal of Marine Science, pp 673–692Google Scholar
  28. James AG, Findlay KP (1989) Effect of particle size and concentration on feeding behaviour, selectivity and rates of food ingestion by the Cape anchovy Engraulis capensis. Mar Ecol Prog Ser 50:275–294. doi: CrossRefGoogle Scholar
  29. Kalinina EM, Shevchenko NF (1984) Biology of Vinciguerria nimbaria in the equatorial waters of the Indian Ocean. J Ichtyol 24:60–65Google Scholar
  30. Kawamura A, Hamoaka S (1981) Feeding habit of the gonostomatid fish, Vinciguerria nimbaria collected from the stomach of brydes whales in the Southwestern North Pacific. Bull Plankton Soc Japan 28:141–151Google Scholar
  31. Le Borgne R, Rodier M (1997) Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res Part II Top Stud Oceanogr 44:2003–2023. doi: CrossRefGoogle Scholar
  32. Le Borgne R, Roger C (1983) Caractéristiques de la composition et de la physiologie des peuplements hauturiers de zooplancton et de micronecton du Golfe de Guinée. Oceanogr Trop 18:381–418Google Scholar
  33. Le Borgne R, Herbland A, Lebouteiller A, Roger C (1983) Biomasse, excrétion et production de zooplancton-micronecton hauturier du golfe de Guinée. Relations avec le phytoplancton et les particules. Oceanogr Trop 18:419–460Google Scholar
  34. Lebedeva LP, Nikolaeva GG, Artemiev VA, Neuronov AM (1997) Quantitative characteristics of mesoplankton of the tropical Atlantic during winter–spring period. Oceanol (Mosc) 37:788–794Google Scholar
  35. Lebourges-Dhaussy A, Marchal E, Menkes C, Champalbert G, Biessy B (2000) Vinciguerria nimbaria (micronekton), environment and tuna: their relationships in the eastern tropical Atlantic. Oceanol Acta 23:515–528. doi: CrossRefGoogle Scholar
  36. Legand M, Bourret P, Fourmanoir P, Grandperrin JA, Gueredrat JA, Michel A, Rancurel A, Repelin R, Roger C (1972) Relations trophiques et distributions verticales en milieu pélagique dans l’Océan Pacifique intertropical. Cah ORSTOM sér Océanogr 10:303–393Google Scholar
  37. Legeckis R (1977) Long waves in the eastern equatorial Pacific Ocean: a view from a geostationary satellite. Science 197:1177–1181. doi: CrossRefGoogle Scholar
  38. Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123. doi: CrossRefGoogle Scholar
  39. Marchal E, Lebourges A (1996) Acoustic evidence for unusual diel behaviour of a mesopelagic fish (Vinciguerria nimbaria) exploited by tuna. J Mar Sci 53:443–447Google Scholar
  40. Marchal E, Josse E, Lebourges-Dhaussy A (1996) Prédateurs et proies : une approche acoustique. Oceanis 22:117–132Google Scholar
  41. Marshall J, Elliott M (1997) A comparison of univariate and multivariate numerical and graphical techniques for determining inter-and intraspecific feeding relashionships in estuarine fish. J Fish Biol 51:526–545. doi: CrossRefGoogle Scholar
  42. Ménard F, Stéquert B, Rubin A, Herrera M, Marchal E (2000) Food consumption of tuna in the equatorial Atlantic ocean: FAD-associated versus unassociated schools. Aquat Liv Res 13:233–240. doi: CrossRefGoogle Scholar
  43. Menkes CE, Kennan SC, Flament P, Dandonneau Y, Masson S, Biessy B, Marchal E, Eldin G, Grelet J, Montel Y, Morliere A, Lebourges Dhaussy A, Moulin C, Champalbert G, Herbland A (2002) A whirling ecosystem in the equatorial Atlantic—art. no. 1553. Geophys Res Lett 29(11):231–234. doi: CrossRefGoogle Scholar
  44. Menon NG, Pillai NGK, Reghu R, Balachandran K (1996) Distribution and abundance of the genus Vinciguerria (Gonostomatidae) in the DSL of the Indian EEZ with a note on the biology of Vinciguerria nimbaria. In: Abidi SAH, Ravindran V, Balachandran K, Agadi VV (eds) Proceedings of the second workshop on scientific results of Forv Sagar Sampada. Indian Department of Ocean Development, New Delhi, pp 271–284Google Scholar
  45. Morlière A, Le Bouteiller A, Citeau JT (1994) Tropical instability waves in the Atlantic Ocean: a contributor to biological processes. Oceanol Acta 17:585–596Google Scholar
  46. Motoda S (1959) Devices of imple plankton apparatus. Mem Fac Fish Hokkaido Univ 7:73–94Google Scholar
  47. N’Goran YN, Pagano M (1999) Type de nutrition chez Vinciguerria nimbaria dans une zone tropicale de l’Atlantique Oriental. Cybium 23:85–92Google Scholar
  48. Ozawa T, Fujii K, Kawaguchi K (1977) Feeding chronology of the vertically migrating gonostomatid fish Vinciguerria nimbaria (Jordan and Williams) off southern Japan. J Oceanogr Soc Jpn 33:320–327. doi: CrossRefGoogle Scholar
  49. Paxton JR (1967) Biological note on southern California lanternfish (family Myctophidae). Calif Fish Game 53:214–217Google Scholar
  50. Piontkovski SA, Landry MR (2003) Copepod species diversity and climate variability in the tropical Atlantic Ocean. Fish Oceanogr 12(4–5):352–359. doi: CrossRefGoogle Scholar
  51. Piontkovski SA, Williams R (1995) Multiscale variability of tropical ocean zooplankton biomass. ICES J Mar Sci 52:643–656. doi: CrossRefGoogle Scholar
  52. Piontkovski SA, Landry MR, Finenko ZZ, Kovalev AV, Williams R, Gallienne CP, Mishonov AV, Skryabin VA, Tokarev YN, Nikolsy VN (2003) Plankton communities of the South Atlantic anticyclonic gyre. Oceanol Acta 26(3):255–268. doi: CrossRefGoogle Scholar
  53. Plounevez S, Champalbert G (1999) Feeding behaviour and trophic environment of Engraulis encrasicolus (L.) in the Bay of Biscay. Estuar Coast Shelf Sci 49:177–191. doi: CrossRefGoogle Scholar
  54. Postel L, Arndt EA, Brenning U (1995) Rostock zooplankton studies off West Africa. Helgoland Meeresunter 49:829–847. doi: CrossRefGoogle Scholar
  55. Roe HSJ (1974) Observations on the diurnal vertical migrations of an oceanic animal community. Mar Biol (Berl) 28:99–113. doi: CrossRefGoogle Scholar
  56. Roger C, Marchal E (1994) Mise en évidence de conditions favorisant l’abondance des albacores, Thunnus albacores et des listaos, Katsuwonus pelamis dans l’Atlantique équatorial Est. ICCAT. Recl Doc Scient 32:237–248Google Scholar
  57. Shevchenko NF (1986) Feeding of Vinciguerria nimbaria (Gonostomatidae) in the tropical zone of the Atlantic Ocean. J Ichtyol 3:434–439Google Scholar
  58. Shevchenko NF (1996) Feeding of the Oceanic lightfish Vinciguerria nimbaria (Gonostomatidae) in the dynamically active zones of the Eastern Equatorial Atlantic. J Ichtyol 36:476–478Google Scholar
  59. Silas EG, George KC (1969) On the larval and post larval development and distribution of the mesopelagic fish Vinciguerria nimbaria (Jordan and Williams) (Family Gonostomatiddae) off the west coast of India and the Laccadive sea. J Mar Assoc India 11:218–250Google Scholar
  60. Stequert B, Menard F, Marchal E (2003) Reproductive biology of Vinciguerria nimbaria in the equatorial waters of the eastern Atlantic Ocean. J Fish Biol 62:1116–1136. doi: CrossRefGoogle Scholar
  61. Thioulouse J (1997) ADE-4, a multivariate analysis and graphical display software. Stat Comput 7:75–80. doi: CrossRefGoogle Scholar
  62. UNESCO (1968) Zooplankton sampling. Monogr Oceanogr Methodol 2:1–174Google Scholar
  63. Voituriez B, Herbland A, Le Borgne R (1982) L’upwelling équatorial de l’Atlantique Est pendant l’Expérience Météorologique Mondiale (PEMG). Oceanol Acta 5:301–314Google Scholar
  64. Wood ED, Armstrong FAJ, Richards FA (1967) Determination of nitrate in sea water by cadmium copper reduction to nitrite. J Mar Assoc UK 47:23–31CrossRefGoogle Scholar
  65. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res 10:221–231Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gisèle Amélie Champalbert
    • 1
    Email author
  • Basile Kouamé
    • 2
  • Marc Pagano
    • 1
  • Emile Marchal
    • 3
  1. 1.IRD, UR 167, Station Marine d’EndoumeMarseilleFrance
  2. 2.Centre de Recherches Océanologiques d’AbidjanAbidjan 01Ivory Coast
  3. 3.IRD, Institut OcéanographiqueParisFrance

Personalised recommendations