Marine Biology

, Volume 156, Issue 1, pp 1–12 | Cite as

Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae)

  • A. SchiaritiEmail author
  • M. Kawahara
  • S. Uye
  • H. W. Mianzan
Original Paper


The life cycle of Lychnorhiza lucerna (Scyphozoa: Rhizostomeae) and the settlement preferences of its larvae were studied using laboratory-based rearing experiments. Mature medusae of L. lucerna were collected from the beach of the Río de la Plata estuary, Argentina. This species displayed the typical metagenetic, (i.e. medusoid and polypoid), life cycle reported for other rhizostomes. The fertilized eggs developed into motile and short lived planulae. The majority of planulae settled on the air-water interface (p < 0.001). Of those that settled on the settlement plates provided, no significant differences were observed between styrene slides, glass slides and shells of the bivalve Mactra isabelleana (p > 0.05). No planulae settled on stones. Several hours after planulae settled, they metamorphosed into sessile four-tentacled scyphistomae. Most scyphistomae attached onto the air-water interface. At 19–22°C, the scyphistomae grew up to 22 tentacles and reached 1,500 μm height. The scyphistomae increased their numbers by means of formation of podocysts from which new polyps emerged and strobilated. Strobilation occurred 46 days after settlement. Only polydisk strobilation was observed and each strobila always produced three ephyrae. After releasing ephyrae, strobilae returned to normal scyphistomae and were capable of repeating strobilation. A single founder polyp was estimated to produce up to 60 ephyrae over 4 months. Ephyrae developed into metephyrae 15 days after release at 19–22°C. In this paper we describe the morphological and some behavioural features of L. lucerna in the polypoid and early medusoid stages.


Nannochloropsis Oculata Marginal Lobe Gastrovascular Cavity Plata Estuary Jellyfish Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Mundo Marino, Mundo Marino Foundation and Miguel Marchi for providing support and facilities in jellyfish collection. We also thank Dr. Jack Costello and two anonymous reviewers for improving this manuscript and Dr. M. D. Viñas for allowing us the use of temperature-controlled chamber. Finally we are grateful to the Aquaculture Project (INIDEP) and especially to Federico Bianca who provided us sea water, rotifers and Artemia eggs. This work was supported by Fundación Antorchas 13900–13, CONICET PIP 5009, FONCyT PICT 1553, the Inter-American Institute for Global Change Research CRN-2076, which is supported by the US National Science Foundation (Grant GEO-0452325), and Japan Science Promotion Society (No 16405001). This is INIDEP contribution No 1488.


  1. Álvarez Colombo G, Mianzan HW, Madirolas A (2003) Acoustic characterization of gelatinous-plankton aggregations: four case studies from the Argentinean continental shelf. ICES J Mar Sci 60:650–657. doi: CrossRefGoogle Scholar
  2. Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, LondonGoogle Scholar
  3. Berrill N (1949) Developmental analysis of Scyphomedusae. Biol Rev Camb Philos Soc 24:393–410. doi: CrossRefGoogle Scholar
  4. Bigelow RP (1900) The anatomy and development of Cassiopea xamachana. Mem Boston Soc Nat Hist 5:191–236Google Scholar
  5. Blanquet RS (1972) Structural and chemical aspects of the podocyst cuticle of the scyphozoan medusa, Chrysaora quinquecirrha. Biol Bull 142:1–10. doi: CrossRefGoogle Scholar
  6. Brewer RH, Feingold JS (1991) The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. J Exp Mar Biol Ecol 152:49–60. doi: CrossRefGoogle Scholar
  7. Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8:296–306. doi: CrossRefGoogle Scholar
  8. Calder DR (1973) Laboratory observations on the life history of Rhopilema verrilli (Scyphozoa: Rhizostomeae). Mar Biol (Berl) 21:109–114. doi: CrossRefGoogle Scholar
  9. Calder DR (1982) Life history of the Cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biol Bull 162:149–162. doi: CrossRefGoogle Scholar
  10. Cargo DG (1971) The sessile stages of a Scyphozoan identified as Rhopilema verrilli. Tulane Stud Zool Bot 17:31–34Google Scholar
  11. Cargo DG, Rabenold GE (1980) Observations on the asexual reproductive activities of the sessile stages of the sea nettle Chrysaora quinquecirrha (Scyphozoa). Estuaries 3:20–27. doi: CrossRefGoogle Scholar
  12. Cargo DG, Schultz LP (1966) Notes on the biology of the Sea Nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesap Sci 7:95–100. doi: CrossRefGoogle Scholar
  13. Chen J, Ding G (1983) Effect of temperature on strobilation of jellyfish (Rhopilema esculenta Kishinouye—Scyphozoa, Rhizostomeae). Acta Zoologica Sin 29:195–206Google Scholar
  14. Chen J, Ding G (1984) Effect of light on the strobilation of edible medusa, Rhopilema esculenta Kishinouye (Cnidaria, Scyphozoa). Oceanologia Limnol sin 15:310–316Google Scholar
  15. Claus C (1890) Über die Entwicklung des Scyphostoma von Cotylorhiza, Aurelia und Chrysaora, sowie ueber die systematische Stellung der Scyphomedusen. I. Arbeiten Zoologischen Inst Univ Wien Zoologischen Stn Triest 9:85–128Google Scholar
  16. Claus C (1893) Über die Entwicklung des Scyphostoma von Cotylorhiza, Aurelia, und Chrysaora, sowie ueber die systematische Stellung der Scyphomedusen. II. Arbeiten Zoologischen Inst Univ Wien Zoologischen Stn Triest 10:1–70Google Scholar
  17. Ding G, Chen J (1981) The life history of Rhopilema esculenta Kishinouye. J Fish China 5:93–104 Suichan XuebaoGoogle Scholar
  18. Gohar HAF, Eisawy AM (1960) The development of Cassiopea andromeda (Scyphomedusae). Publ Mar Biol Sta Ghardaqa Red Sea 11:147–190Google Scholar
  19. Graham WM, Pagès F, Hammer WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212. doi: CrossRefGoogle Scholar
  20. Guo P (1990) Effect of nutritional condition on the formation and germination of the podocyst of scyphistomae of Rhopilema esculenta Kishinouye. J Fish China 14:206–211 Suichan XuebaoGoogle Scholar
  21. Haeckel E (1880) Das System der Medusen. I, 2: system der Acraspeden. Gustav Fischer, Jena, pp 361–672Google Scholar
  22. Hofmann DK, Honegger TG (1990) Bud formation and metamorphosis in Cassiopea andromeda (Cnidaria: Scyphozoa): a developmental and ultraestructural study. Mar Biol (Berl) 105:509–518. doi: CrossRefGoogle Scholar
  23. Holst S, Sötje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol (Berl) 151:1695–1710. doi: CrossRefGoogle Scholar
  24. Jarms G (2007) The polyps of the Scyphozoa and their impact on jellyfish blooms. Second International Jellyfish Blooms, 24–27 June, Gold Coast, AustraliaGoogle Scholar
  25. Kawahara M, Uye S-i, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307:161–173. doi: CrossRefGoogle Scholar
  26. Keen SL (1987) Recruitment of Aurelia aurita (Cnidaria: Scyophozoa) larvae is position-dependent, and independent of conespecific density, within a settling surface. Mar Ecol Prog Ser 38:151–160. doi: CrossRefGoogle Scholar
  27. Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria: Scyphozoa) - Life history of a stationary population. Mar Ecol (Berl) 13:333–362. doi: CrossRefGoogle Scholar
  28. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:7–469CrossRefGoogle Scholar
  29. Kramp PL (1970) Zoogeographical studies on Rhizostomeae (Scyphozoa). Vidensk Meddr dansk naturh Foren 133:7–30Google Scholar
  30. Lange J, Kaiser R (1995) The mantenance of pelagic jellyfish in the Zoo-Aquarium Berlin. Int Zoo Yb 34:59–64. doi: CrossRefGoogle Scholar
  31. Loeb MJ (1973) The effect of light on strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha. Mar Biol (Berlin) 20:144–147. doi: CrossRefGoogle Scholar
  32. Loeb MJ (1974) Strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha II. Partial characterization of the neck-inducing factor from strobilating polyps. Comp Biochem Physiol 47:291–301. doi: CrossRefGoogle Scholar
  33. Lotan A, Ben-Hillel R, Loya Y (1992) Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Mar Biol (Berl) 112:237–242. doi: CrossRefGoogle Scholar
  34. Ludwig FD (1969) Die Zooxanthellen bei Cassiopea andromeda Eschscholtz 1829 (Polyp-Stadium) und ihre Bedeutung für die Strobilation. Zool Jb 86:238–277 Abt Anat Ontog TiereGoogle Scholar
  35. Magnusen JE (1980) Epidermal cell movement during podocyst formation in Chrysaora quinquecirrha. In: Tardent O, Tardent R (eds) Developmental and cellular biology of coelenterates. Elsevier/North Holland Biomedical Press, Amsterdam, pp 435–440Google Scholar
  36. Mianzan HW (1986) Estudio sistemático y bioecológico de algunas medusas Scyphozoa de la región subantártica. PhD, La PlataGoogle Scholar
  37. Mianzan HW, Cornelius PFS (1999) Cubomedusae and Scyphomedusae. In: Boltovskoy D (ed) South Atlantic Zooplankton. Blackuys Publishers, pp 513–559Google Scholar
  38. Mills CE (2001) Jellyfish Blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68. doi: CrossRefGoogle Scholar
  39. Morandini AC (2003) Estrutura populacional de Chrysaora lactea e Lychnorhiza lucerna (Cnidaria, Scyphozoa) em amostras de plâncton, com a redescrição das espécies. PhD. Instituto de Biociências da Universidade de São Paulo, São PauloGoogle Scholar
  40. Morandini AC, Lang da Silveira F, Jarms G (2004) The life cycle of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa) with notes on the scyphistoma stage of three other species. Hydrobiologia 530/531:347–354. doi: CrossRefGoogle Scholar
  41. Müller MI, Cadaveira ML, Masakazu O (2003) Cultivo de rotíferos en Argentina - Primer alimento para larvas de peces marinos VIII Jornadas Nacionales de Ciencias del Mar. Mar del Plata, ArgentinaGoogle Scholar
  42. Neumann R (1977) Polyp morphogenesis in a scyphozoan: evidence for a head inhibitor from the presumptive foot end in vegetative buds of Cassiopea andromeda. Wilhelm Roux′s Archs devl Biol 183:79–83CrossRefGoogle Scholar
  43. Nogueira M Jr, Haddad MA (2005) Lychnorhiza lucerna Haeckel (Scyphozoa, Rhizostomeae) and Libinia ferreirae Brito Capello (Decapoda, Majidae) association in southern Brazil. Rev Bras Zoologia 22:908–912CrossRefGoogle Scholar
  44. Olmon JE, Webb KL (1974) Metabolism of 131I in relation to strobilation of Aurelia aurita L. (Scyphozoa). J Exp Mar Biol Ecol 16:113–122. doi: CrossRefGoogle Scholar
  45. Paspaleff BW (1938) Über die Entwicklung von Rhizostoma pulmo Agass. Trud chernomorsk biol Sta Varna 7:1–25Google Scholar
  46. Pitt KA (2000) Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Biol (Berl) 136:269–279. doi: CrossRefGoogle Scholar
  47. Rahat M, Adar O (1980) Effect of symbiotic zooxanthellae and temperature on budding and strobilation in Cassiopeia andromeda (Eschscholz). Biol Bull 159:394–401. doi: CrossRefGoogle Scholar
  48. Raskoff KA, Sommer FA, Hamner WM, Cross KM (2003) Collection and culture techniques for gelatinous zooplancton. Biol Bull 204:68–80. doi: CrossRefGoogle Scholar
  49. Rippingale RJ, Kelly SJ (1995) Reproduction and survival of Phyllorhiza punctata (Cnidaria: Rhizostomeae) in a seasonally fluctuating regime in western Australia. Mar Freshw Res 46:1145–1151. doi: CrossRefGoogle Scholar
  50. Rottini Sandrini L, Avian M (1983) Biological cycle of Pelagia noctiluca: morphological aspects of the development from planula to ephyra. Mar Biol (Berl) 74:169–174. doi: CrossRefGoogle Scholar
  51. Russell FRS (1970) II Pelagic Scyphozoa with a supplement to the first volume on hydromedusae The medusae of the British isles. Cambridge University Press, New YorkGoogle Scholar
  52. Sokal RR, Rohlf FJ (1999) Introducción a la Bioestadística. Editorial Reverté, BarcelonaGoogle Scholar
  53. Spangenberg DB (1965) Cultivation of the life stages of Aurelia aurita under controlled conditions. J Exp Zool 159:303–318. doi: CrossRefGoogle Scholar
  54. Spangenberg DB (1971) Thyroxine induced metamorphosis in Aurelia. J Exp Zool 178:183–194. doi: CrossRefGoogle Scholar
  55. Sugiura Y (1963) On the life history of rhizostome medusa I. Mastigias papua L. Agassiz. Annot Zool Jpn 36:194–202Google Scholar
  56. Sugiura Y (1966) On the life-history of Rhizostome medusae IV. Cephea cephea. Embryologia (Nagoya) 9:105–122CrossRefGoogle Scholar
  57. Tronolone VB, Morandini AC, Migotto AE (2002) On the occurrence of scyphozoan ephyrae (Cnidaria, Scyphozoa, Semaeostomeae and Rhizostomeae) in the Southeastern Brazilian coast. Biota Neotropica 2:1–18CrossRefGoogle Scholar
  58. Uchida T (1926) The anatomy and development of a rhizostome medusa, Mastigias papua L. Agassiz, with observations on the phylogeny of Rhizostomeae. J Fac Sci imp Univ Tokyo (IV: Zool) 1:45–95Google Scholar
  59. Urien CM (1972) Río de la Plata estuarine environment. Geol Soc Am Memoir 133:213–233CrossRefGoogle Scholar
  60. Vannucci M (1951) Hydrozoa e Scyphozoa existentes no Instituto Paulista de Oceanografia I. Bol Inst Paul Oceanografia 2:69–104CrossRefGoogle Scholar
  61. Vannucci-Mendes M (1944) Sôbre a larva de Dibothriorhynchus dinoi, sp. n. parasita dos Rhizostomata. (Cestoda, Tetrarhynchidea). Arq Museu Paranaense 4:47–82Google Scholar
  62. Zamponi MO (2002) The association between medusa Lychnorhiza lucerna (Scyphomedusae, Rhizostomeae) and Decapod Libinia spinosa (Brachyura, Majidae) recorded for the first time in neritic waters of Argentina. Russ J Mar Biol 28:267–269. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Schiariti
    • 1
    • 2
    Email author
  • M. Kawahara
    • 3
  • S. Uye
    • 3
  • H. W. Mianzan
    • 1
    • 2
  1. 1.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  2. 2.Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Graduate School of Biosphere ScienceHiroshima UniversityHiroshimaJapan

Personalised recommendations