Advertisement

Marine Biology

, Volume 155, Issue 3, pp 337–345 | Cite as

Cytokine and acute phase protein expression in blood samples of harbour seal pups

  • S. Fonfara
  • A. Kakuschke
  • T. Rosenberger
  • U. Siebert
  • A. Prange
Original Paper

Abstract

Cytokines and acute phase proteins (APP) are important mediators of the immune system and sensitive parameters to assess the immune status of mammals. Especially in newborn animals, maturation of the immune system is important for their survival. However, only little information is available for pinnipeds. To get baseline levels and investigate the development of the immune system, cytokine and APP expression was analysed in blood samples of six and eight harbour seal pups collected at the German North Sea Coast in 2004 and 2005, respectively. Blood samples were taken at admission and after rehabilitation in the Seal Centre Friedrichskoog. mRNA expressions of interleukin (IL)-1β, 2, 4, 6, 8, 10, 12, interferon (IFN)γ, and transforming growth factor (TGF)β, as well as of APP haptoglobin (HP), heat shock protein (HSP) 70 and metallothionein (MT) 2 were analyzed using real time RT-PCR. Cytokine and APP expression varied between animals and years. However, general changes during rehabilitation of pups were present. Higher levels of pro-inflammatory cytokines IL-1β, 6, 8, and 12 were found at admission, consistent with an activated immune system, whereas the anti-inflammatory cytokine IL-4 was increased after rehabilitation, suggesting recovery from infections and maturation of the immune system during rehabilitation. This preliminary study suggests that cytokines are sensitive parameters to assess the immune system of harbour seals.

Keywords

Acute Phase Protein Harbour Seal Harbour Porpoise Piro Grey Seal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank all volunteers for reporting and collecting seals, in particular seal hunters from the German North Sea Cost, and all employers, students, and helpers at the Seal Centre Friedrichskoog for their dedication.

References

  1. Allan AK, Hawksworth GM, Woodhouse LR, Sutherland B, King JC, Beattie JH (2000) Lymphocyte metallothionein mRNA responds to marginal zinc intake in human volunteers. Br J Nutr 84:747–756PubMedGoogle Scholar
  2. Arredouani MS, Kasran A, Vanoirbeek JA, Berger FG, Baumann H, Ceuppens JL (2005) Haptoglobin dampens endotoxin-induced inflammatory effects both in vitro and in vivo. Immunology 114:263–271. doi: https://doi.org/10.1111/j.1365-2567.2004.02071.x CrossRefGoogle Scholar
  3. Beineke A, Siebert U, van Elk N, Baumgärtner W (2004) Development of a lymphocyte-transformation-assay for peripheral blood lymphocytes of the harbor porpoise and detection of cytokines using the reverse-transcription polymerase chain reaction. Vet Immunol Immunopathol 98:59–68. doi: https://doi.org/10.1016/j.vetimm.2003.10.002 CrossRefGoogle Scholar
  4. Beineke A, Siebert U, Müller G, Baumgärtner MF (2006) Increased blood interleukin-10 mRNA levels in diseased free-ranging harbor porpoises (Phocoena phocoena). Vet Immunol Immunopathol 115:100–106. doi: https://doi.org/10.1016/j.vetimm.2006.09.006 CrossRefGoogle Scholar
  5. Bremner I, Beattie JH (1990) Metallothionein and the trace metals. Annu Rev Nutr 10:63–83. doi: https://doi.org/10.1146/annurev.nu.10.070190.000431 CrossRefGoogle Scholar
  6. Cousins RJ, Leinart AS (1988) Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J 2(13):2884–2890CrossRefGoogle Scholar
  7. Daffada AAI, Young SP (1999) Coordinated regulation of ceruloplasmin and metallothionein mRNA by interleukin-1 and copper in HepG2 cells. FEBS Lett 457:214–218. doi: https://doi.org/10.1016/S0014-5793(99)01036-4 CrossRefGoogle Scholar
  8. Davis RS, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088CrossRefGoogle Scholar
  9. Denis F, Archambault D (2001) Molecular cloning and characterization of beluga whale (Delphinapterus leucas) interleukin-1 beta and tumor necrosis factor-alpha. Can J Vet Res 65:233–240PubMedPubMedCentralGoogle Scholar
  10. Di Molfetto-Landon L, Erickson KL, Blanchardchannell M, Jeffries SJ, Harvey JT, Jessup DA et al (1995) Blastogenesis and interleukin-2 receptor expression assays in the harbor seal (Phoca vitulina). J Wildl Dis 31:150–158CrossRefGoogle Scholar
  11. Di Piro JT (1997) Cytokine networks with infection: mycobacterial infections, leishmaniasis, human immunodeficiency virus infection, and sepsis. Pharmacotherapy 17:205–223Google Scholar
  12. Eckersall PD, Conner JG (1988) Bovine and canine acute phase proteins. Vet Res Commun 12:169–178. doi: https://doi.org/10.1007/BF00362798 CrossRefGoogle Scholar
  13. Elenkov IJ, Chrousos GP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab 10:359–368. doi: https://doi.org/10.1016/S1043-2760(99)00188-5 CrossRefGoogle Scholar
  14. Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP (2005) Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 12:255–269. doi: https://doi.org/10.1159/000087104 CrossRefGoogle Scholar
  15. Enwonwu CO, Phillips RS, Savage KO (2005) Inflammatory cytokine profile and circulating cortisol levels in malnourished children with necrotizing ulcerative gingivitis. Eur Cytokine Netw 16:240–248PubMedGoogle Scholar
  16. Fonfara S, Siebert U, Prange A (2007a) Cytokines and acute phase proteins as markers for infection in harbor porpoises (Phocoena phocoena). Mar Mamm Sci 23:931–942. doi: https://doi.org/10.1111/j.1748-7692.2007.00140.x CrossRefGoogle Scholar
  17. Fonfara S, Siebert U, Prange A, Colijn F (2007b) The impact of stress on cytokine and haptoglobin mRNA expression in blood samples from harbor porpoises (Phocoena phocoena). J Mar Biol Assoc UK 87:305–311. doi: https://doi.org/10.1017/S0025315407055567 CrossRefGoogle Scholar
  18. Funke C, King DP, McBain JF, Adelung D, Stott JL (2003) Expression and functional characterization of killer whale (Orcinus orca) interleukin-6 (IL-6) and development of a competitive immunoassay. Vet Immunol Immunopathol 93:69–79. doi: https://doi.org/10.1016/S0165-2427(03)00055-2 CrossRefGoogle Scholar
  19. Hall AJ (1998) Blood chemistry and hematology of gray seal (Halichoerus grypus) pups from birth to postweaning. J Zoo Wildl Med 29:401–407PubMedGoogle Scholar
  20. Härtel C, Adam N, Strunk T, Temming P, Müller-Steinhardt M, Schultz C (2005) Cytokine response correlates differentially with age in infancy and early childhood. Clin Exp Immunol 142(3):446–453PubMedPubMedCentralGoogle Scholar
  21. Heegaard PMH, Klausen J, Nielsen JP, Gonzalez-Ramon N, Pineiro M, Lampreave F et al (1998) The porcine acute phase response to infection with Actinobacillus pleuropneumoniae. Haptoglobin, C-reactive protein, major acute phase protein and serum amyloid a protein are sensitive indicators of infection. Comp Biochem Physiol B 119:365–373. doi: https://doi.org/10.1016/S0305-0491(97)00362-3 CrossRefGoogle Scholar
  22. Inoue Y, Itou T, Oike T, Sakai T (1999a) Cloning and sequencing of the bottle-nosed dolphin (Tursiops truncatus) interferon-gamma gene. J Vet Med Sci 61:939–942. doi: https://doi.org/10.1292/jvms.61.939 CrossRefGoogle Scholar
  23. Inoue Y, Itou T, Sakai T, Oike T (1999b) Cloning and sequencing of a bottle-nosed dolphin (Tursiops truncatus) interleukin-4-encoding cDNA. J Vet Med Sci 61:693–696. doi: https://doi.org/10.1292/jvms.61.693 CrossRefGoogle Scholar
  24. Inoue Y, Itou T, Ueda K, Oike T, Sakai T (1999c) Cloning and sequencing of a bottle-nosed dolphin (Tursiops truncatus) interleukin-1 alpha and-1 beta complementary DNAs. J Vet Med Sci 61:1317–1321. doi: https://doi.org/10.1292/jvms.61.1317 CrossRefGoogle Scholar
  25. Inoue Y, Itou T, Jimbo T, Syouji Y, Ueda K, Sakai T (2001) Molecular cloning and functional expression of bottle-nosed dolphin (Tursiops truncatus) interleukin-1 receptor antagonist. Vet Immunol Immunopathol 78:131–141. doi: https://doi.org/10.1016/S0165-2427(00)00263-4 CrossRefGoogle Scholar
  26. Iwakabe K, Shimada M, Ohta A, Yahata T, Ohmi Y, Habu S et al (1998) The restraint stress drives a shift in Th1/Th2 balance toward Th2-dominant immunity in mice. Immunol Lett 62:39–43. doi: https://doi.org/10.1016/S0165-2478(98)00021-2 CrossRefGoogle Scholar
  27. Kakuschke A, Valentine-Thon E, Fonfara S, Griesel S, Siebert U, Prange A (2006) Metal sensitivity of marine mammals: a case study of a gray seal (Halichoerus grypus). Mar Mamm Sci 22:985–996. doi: https://doi.org/10.1111/j.1748-7692.2006.00059.x CrossRefGoogle Scholar
  28. Kakuschke A, Valentine-Thon E, Fonfara S, Griesel S, Rosenberger T, Siebert U et al (2008) Metal-induced impairment of the cellular immunity of newborn harbor seals (Phoca vitulina). Arch Environ Contam Toxicol 55:129–136. doi: https://doi.org/10.1007/s00244-007-9092-3 CrossRefGoogle Scholar
  29. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246PubMedGoogle Scholar
  30. King DP, Robinson I, Hay AWM, Evans SW (1993) Identification and partial characterization of common seal (Phoca vitulina) and gray seal (Haliochoerus grypus) interleukin-6-like activities. Dev Comp Immunol 17:449–458. doi: https://doi.org/10.1016/0145-305X(93)90036-P CrossRefGoogle Scholar
  31. King DP, Hay AWM, Robinson I, Evans SW (1995) Leukocyte interleukin-1-like activity in the common seal (Phoca vitulina) and grey seal (Halichoerus grypus). J Comp Pathol 113:253–261. doi: https://doi.org/10.1016/S0021-9975(05)80040-4 CrossRefGoogle Scholar
  32. King DP, Schrenzel MD, McKnight ML, Reidarson TH, Hanni KD, Stott JL et al (1996) Molecular cloning and sequencing of interleukin 6 cDNA fragments from the harbor seal (Phoca vitulina), killer whale (Orcinus orca), and Southern sea otter (Enhydra lutris nereis). Immunogenetics 43:190–195CrossRefGoogle Scholar
  33. King DP, Sanders JL, Nomura CT, Stoddard RA, Ortiz CL, Evans SW (1998) Ontogeny of humoral immunity in northern elephant seal (Mirounga angustirostris) neonates. Comp Biochem Physiol B 121:363–368. doi: https://doi.org/10.1016/S0305-0491(98)10118-9 CrossRefGoogle Scholar
  34. Kostro K, Glinski Z, Wojcicka-Lorenowicz K, Krakowski L (2001) Acute-phase proteins as indicators of diseases in animals. Med Weter 57:539–542Google Scholar
  35. Kostro K, Wojcicka-Lorenowicz K, Glinski Z, Krakowski L, Wrona Z (2002) Acute phase proteins as ligands of cells of the immune system. Med Weter 58:929–933Google Scholar
  36. Lalancette A, Morin Y, Measures L, Fournier M (2003) Contrasting changes of sensitivity by lymphocytes and neutrophils to mercury in developing grey seals. Dev Comp Immunol 27:735–747. doi: https://doi.org/10.1016/S0145-305X(03)00038-7 CrossRefGoogle Scholar
  37. Lucey DR, Clerici M, Shearer GM (1996) Type 1 and type 2 cytokine dysregulationin human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 9:532–562PubMedPubMedCentralGoogle Scholar
  38. Marchant A, Goldman M (2005) T cell-mediated immune responses in human newborns: ready to learn? Clin Exp Immunol 141:10–18. doi: https://doi.org/10.1111/j.1365-2249.2005.02799.x CrossRefGoogle Scholar
  39. Mosmann TR, Sad S (1996) The expanding universe of T-Cell subsets: Th1, Th2 and more. Immunol Today 17:138–146. doi: https://doi.org/10.1016/0167-5699(96)80606-2 CrossRefGoogle Scholar
  40. Murata H, Shimada N, Yoshioka M (2004) Current research on acute phase proteins in veterinary diagnosis: an overview. Vet J 168:28–40. doi: https://doi.org/10.1016/S1090-0233(03)00119-9 CrossRefGoogle Scholar
  41. Ness TL, Bradley WG, Reynolds JE, Roess WB (1998) Isolation and expression of the interleukin-2 gene from the killer whale, Orcinus orca. Mar Mamm Sci 14:531–543. doi: https://doi.org/10.1111/j.1748-7692.1998.tb00740.x CrossRefGoogle Scholar
  42. Njemini R, Abeele MV, Demanet C, Lambert M, Vandebosch S, Mets T (2002) Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. J Clin Immunol 22:195–205. doi: https://doi.org/10.1023/A:1016036724386 CrossRefGoogle Scholar
  43. Oh SK, Pavlotsky N, Tauber AI (1990) Specific binding of haptoglobin to human neutrophils and its functional consequences. J Leukoc Biol 47:142–148CrossRefGoogle Scholar
  44. Petersen HH, Nielsen JP, Heegaard PMH (2004) Application of acute phase protein measurements in veterinary clinical chemistry. Vet Res 35:163–187. doi: https://doi.org/10.1051/vetres:2004002 CrossRefGoogle Scholar
  45. Pillet S, Fournier M, Measures LN, Bouquegneau JM, Cyr DG (2002) Presence and regulation of metallothioneins in peripheral blood leukocytes of grey seals. Toxicol Appl Pharmacol 185:207–217. doi: https://doi.org/10.1006/taap. 2002.9528 CrossRefGoogle Scholar
  46. Ross PS, Pohajdak B, Bowen WD, Addison RF (1993) Immune Function in free-ranging harbor seal (Phoca vitulina) mothers and their pups during lactation. J Wildl Dis 29:21–29CrossRefGoogle Scholar
  47. Ross PS, De Swart RL, Visser IKG, Vedder LJ, Murk W, Bowen WD et al (1994) Relative immunocompetence of the newborn harbor seal, Phoca vitulina. Vet Immunol Immunopathol 42:331–348. doi: https://doi.org/10.1016/0165-2427(94)90077-9 CrossRefGoogle Scholar
  48. Sato M, Sasaki M, Hjo H (1994) Differential induction of metallothionein synthesis by interleukin-6 and tumor necrosis factor-alpha in rat tissues. Int J Immunopharmacol 16:187–195. doi: https://doi.org/10.1016/0192-0561(94)90075-2 CrossRefGoogle Scholar
  49. Shoda LKM, Brown WC, Rice-Ficht AC (1998) Sequence and characterization of phocine interleukin 2. J Wildl Dis 34:81–90CrossRefGoogle Scholar
  50. Shoji Y, Inoue Y, Sugisawa H, Itou T, Endo T, Sakai T (2001) Molecular cloning and functional characterization of bottlenose dolphin (Tursiops truncatus) tumor necrosis factor alpha. Vet Immunol Immunopathol 82:183–192. doi: https://doi.org/10.1016/S0165-2427(01)00353-1 CrossRefGoogle Scholar
  51. Siebert U, Fonfara S, Mundry R, Lehnert K, Seibel H, Rademaker M (2006) Untersuchungen zum Gesundheitszustand von Robben in Schleswig-Holstein im Jahr 2005. Bericht an das Ministerium für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein und das Landesamt für den Nationalpark Schleswig-Holsteinisches WattenmeerGoogle Scholar
  52. St-Laurent G, Archambault D (2000) Molecular cloning, phylogenetic analysis and expression of beluga whale (Delphinapterus leucas) interleukin 6. Vet Immunol Immunopathol 73:31–44CrossRefGoogle Scholar
  53. St-Laurent G, Beliveau C, Archambault D (1999) Molecular cloning and phylogenetic analysis of beluga whale (Delphinapterus leucas) and grey seal (Halichoerus grypus) interleukin 2. Vet Immunol Immunopathol 67:385–394. doi: https://doi.org/10.1016/S0165-2427(99)00009-4 CrossRefGoogle Scholar
  54. Yeung CY, Lee HC, Lin SP, Fang SB, Jiang CB, Huang FY et al (2004) Serum cytokines in differentiating between viral and bacterial enterocolitis. Ann Trop Paediatr 24:337–343. doi: https://doi.org/10.1179/027249304225019163 CrossRefGoogle Scholar
  55. Young RA (1990) Stress proteins and immunology. Annu Rev Immunol 8:401–420. doi: https://doi.org/10.1146/annurev.iy.08.040190.002153 CrossRefGoogle Scholar
  56. Zenteno-Savin T, Castellini MA, Rea LD, Fadely BS (1997) Plasma haptoglobin levels in threatened Alaskan pinniped populations. J Wildl Dis 33:64–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Fonfara
    • 1
    • 2
    • 4
  • A. Kakuschke
    • 1
  • T. Rosenberger
    • 3
  • U. Siebert
    • 2
  • A. Prange
    • 1
  1. 1.GKSS Research CentreInstitute for Coastal ResearchGeesthachtGermany
  2. 2.Research- and Technology Centre Westcoast (FTZ)University of KielBüsumGermany
  3. 3.Seal Centre Friedrichskoog e.V.FriedrichskoogGermany
  4. 4.Small Animal Teaching HospitalUniversity of LiverpoolNestonUK

Personalised recommendations