Advertisement

Marine Biology

, Volume 155, Issue 2, pp 135–146 | Cite as

Bacterial communities of the marine sponges Hymeniacidon heliophila and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil

  • Aline S. Turque
  • Alexander M. Cardoso
  • Cynthia B. Silveira
  • Ricardo P. Vieira
  • Flávia A. D. Freitas
  • Rodolpho M. Albano
  • Alessandra M. Gonzalez
  • Rodolfo Paranhos
  • Guilherme Muricy
  • Orlando B. Martins
Original Paper

Abstract

In this study we performed a survey of the bacterial communities associated with the Western Atlantic demosponges Hymeniacidon heliophila and Polymastia janeirensis, based on 16S rRNA sequencing and transmission electron microscopy (TEM). We compared diversity and composition of the sponge-associated bacteria to those of environmental bacteria, represented by free-living bacterioplankton and by bacteria attached to organic particulate matter in superficial sediments. Partial bacterial 16S rRNA sequences from seawater, sediment, and sponges were retrieved by PCR, cloning, and sequencing. Sequences were subjected to rarefaction analyses, phylogenetic tree construction, and LIBSHUFF quantitative statistics to verify coverage and similarity between libraries. Community structure of the free-living bacterioplankton was phylogenetically different from that of the sponge-associated bacterial assemblages. On the other hand, some sediment-attached bacteria were also found in the sponge bacterial community, indicating that sponges may incorporate bacteria together with sediment particles. Rare and few prokaryotic morphotypes were found in TEM analyses of sponge mesohyl matrix of both species. Molecular data indicate that bacterial richness and diversity decreases from bacterioplankton, to particulate organic sediment, and to H. heliophila and P. janeirensis. Sponges from Rio de Janeiro harbor a pool of novel and exclusive sponge-associated bacterial taxa. Sponge-associated bacterial communities are composed of both taxons shared by many sponge groups and by species-specific bacteria.

Keywords

Sponge Bacterial Community Sponge Species Sponge Tissue Bacterial Phylotypes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Genome Sequencing facilities core Johanna Döbereiner, IBqM/UFRJ. We are grateful to Alvaro N. A. Monteiro for enthusiastic discussions and manuscript review. We thank Fernando C. Moraes (Museu Nacional, UFRJ) for help with sample collection. We are also grateful to Noemia Rodrigues (IBCCF, UFRJ) for help with TEM. This work was supported by grants and fellowships from FAPERJ (E-26/171.282/2006) and CNPq, Brazil. The experiments described here comply with the Brazilian environmental protection laws.

References

  1. Althoff K, Schütt C, Steffen R, Batel R, Müller WEG (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol (Berl) 130:529–536. doi: 10.1007/s002270050273 CrossRefGoogle Scholar
  2. Andrade L, Gonzalez AM, Araújo FV, Paranhos R (2003) Flow cytometry assessment of bacterioplankton in tropical marine environments. J Microbiol Methods 55:841–850. doi: 10.1016/j.mimet.2003.08.002 CrossRefGoogle Scholar
  3. Bergquist PR (1978) Sponges. Hutchinson, LondonGoogle Scholar
  4. Boury-Esnault N (1973) Résultats Scientifiques des Campagnes de la “Calypso”. Campagne de la “Calypso” au large des côtes atlantiques de l’Amérique du Sud (1961–1962). I. 29. Spongiaires. Ann Inst Oceanograph 49(Suppl. 10):263–295Google Scholar
  5. Boury-Esnault N, Hajdu E, Klautau M, Custodio M, Borojevic R (1994) The value of cytological criteria in distinguishing sponges at the species level: the example of the genus Polymastia. Can J Zool 72(5):795–804CrossRefGoogle Scholar
  6. Cerrano C, Calcinai B, Camillo CG, di Valisano L, Bavestrello G (2007) How and why do sponges incorporate foreign material? Strategies in Porifera. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation, sustainability. série livros 28. Museu Nacional, Rio de Janeiro, pp 239–246Google Scholar
  7. Cervino JM, Winiarski-Cervino K, Polson SW, Goreau T, Smith GW (2006) Identification of bacteria associated with a disease affecting the marine sponge Lanthella basta in New Britain, Papua New Guinea. Mar Ecol Prog Ser 324:139–150. doi: 10.3354/meps324139 CrossRefGoogle Scholar
  8. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA et al (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443. doi: 10.1093/nar/gkg039 CrossRefGoogle Scholar
  9. Edwing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred I accuracy assessment. Genet Res 8:175–185CrossRefGoogle Scholar
  10. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl Environ Microbiol 70:3724–3732. doi: 10.1128/AEM.70.6.3724-3732.2004 CrossRefGoogle Scholar
  11. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  12. Gonzalez AM, Paranhos R, Andrade L, Valentin J (2000) Bacterial production in Guanabara Bay (Rio de Janeiro, Brazil) evaluated by 3H-leucine incorporation. Braz Arch Biol Technol 43:493–500. doi: 10.1590/S1516-89132000000500008 CrossRefGoogle Scholar
  13. Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH Verlag, Berlin, p 600Google Scholar
  14. KL Heck Jr, Gvan Belle, Simberloff D (1975) Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56:1459–1461. doi: 10.2307/1934716 CrossRefGoogle Scholar
  15. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440. doi: 10.1128/AEM.68.9.4431-4440.2002 CrossRefGoogle Scholar
  16. Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol (Berl) 148(6):1221–1230. doi: 10.1007/s00227-005-0164-5 CrossRefGoogle Scholar
  17. Hooper JNA, van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges. Kluwer, New YorkCrossRefGoogle Scholar
  18. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genet Res 9:868–877. doi: 10.1101/gr.9.9.868 CrossRefGoogle Scholar
  19. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586. doi: 10.2307/1934145 CrossRefGoogle Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 CrossRefGoogle Scholar
  21. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi: 10.1093/bioinformatics/17.12.1244 CrossRefGoogle Scholar
  22. Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220. doi: 10.1007/s00248-004-0202-8 CrossRefGoogle Scholar
  23. Lane DJ, Pace B, Olsen GJ, Stahl D, Sogin M, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959. doi: 10.1073/pnas.82.20.6955 CrossRefGoogle Scholar
  24. Muricy G, Hajdu E (2006) Porifera Brasilis. Guia de identificação das esponjas mais comuns do Sudeste do Brasil. Série Livros 17, Museu Nacional, Rio de JaneiroGoogle Scholar
  25. Muricy G, Bézac C, Gallissian MF, Boury-Esnault N (1999) Anatomy, cytology and endobiont bacteria of four Mediterranean species of Plakina (Demospongiae: Homoscleromorpha). J Nat Hist 33:159–176. doi: 10.1080/002229399300353 CrossRefGoogle Scholar
  26. Muscholl-Silberhorn A, Thiel V, Imhoff JF (2007) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55(1):94–106. doi: 10.1007/s00248-007-9255-9 Online firstCrossRefGoogle Scholar
  27. Paranhos R, Pereira AP, Mayr LM (1998) Diel variability of water quality in a tropical polluted bay. Environ Monit Assess 50:131–141. doi: 10.1023/A:1005855914215 CrossRefGoogle Scholar
  28. Parker GH (1910) The reactions of sponges, with a consideration of the origin of the nervous system. J Exp Zool 8:765–805Google Scholar
  29. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246. doi: 10.1073/pnas.93.13.6241 CrossRefGoogle Scholar
  30. Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591. doi: 10.2307/1540270 CrossRefGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  32. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi: 10.1128/AEM.71.3.1501-1506.2005 CrossRefGoogle Scholar
  33. Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492. doi: 10.1128/AEM.70.9.5485-5492.2004 CrossRefGoogle Scholar
  34. Schmitt S, Weisz JB, Lindquist N, Hentschel U (2007) Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microbiol 73:2067–2078. doi: 10.1128/AEM.01944-06 CrossRefGoogle Scholar
  35. Sennet SH, Wright AE, Pomponi SA, Armstrong JE, Willoughby R, Bingham BL (1990) Cellular localization and ecological role of secondary metabolites from the sponge Hymeniacidon heliophila. Int Soc Chem Ecol Annu Meet 1990:8–15Google Scholar
  36. Sharp KH, Eam B, Faulkner J, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629. doi: 10.1128/AEM.01493-06 CrossRefGoogle Scholar
  37. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376. doi: 10.1128/AEM.67.9.4374-4376.2001 CrossRefGoogle Scholar
  38. Smith DC, Azam F (1989) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114Google Scholar
  39. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554PubMedPubMedCentralGoogle Scholar
  40. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347. doi: 10.1128/MMBR.00040-06 CrossRefGoogle Scholar
  41. Thiel V, Leininger S, Schmaljohann R, Brümmer F, Imhoff JF (2007a) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54(1):101–111. doi: 10.1007/s00248-006-9177-y CrossRefGoogle Scholar
  42. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF (2007b) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59(1):47–63. doi: 10.1111/j.1574-6941.2006.00217.x CrossRefGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi: 10.1093/nar/25.24.4876 CrossRefGoogle Scholar
  44. Urbach E, Kevin LV, Young L, Morse A, Larson GL, Giovannoni SJ (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46:557–572CrossRefGoogle Scholar
  45. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314. doi: 10.1016/0022-0981(77)90038-7 CrossRefGoogle Scholar
  46. Vieira RP, Gonzalez AM, Cardoso AM, Oliveira DN, Albano RM, Clementino MM et al (2008) Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro. Environ Microbiol 10(1):189–199. doi: 10.1111/j.1462-2920.2007.01443.x PubMedGoogle Scholar
  47. Webster N, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an a-proteobacterium. Mar Biol (Berl) 138:843–851. doi: 10.1007/s002270000503 CrossRefGoogle Scholar
  48. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444. doi: 10.1128/AEM.67.1.434-444.2001 CrossRefGoogle Scholar
  49. Webster NS, Negri AP, Munro MM, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300. doi: 10.1111/j.1462-2920.2004.00570.x CrossRefGoogle Scholar
  50. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  51. Wichels A, Würtz S, Döpke H, Schütt C, Gerdts G (2006) Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56(1):102–118. doi: 10.1111/j.1574-6941.2006.00067.x CrossRefGoogle Scholar
  52. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol (Berl) 148:907–912. doi: 10.1007/s00227-005-0134-y CrossRefGoogle Scholar
  53. Zhu P, Li Q, Wang G (2007) Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb Ecol 55(3):406–414. doi: 10.1007/s00248-007-9285-3 Online firstCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Aline S. Turque
    • 1
  • Alexander M. Cardoso
    • 1
  • Cynthia B. Silveira
    • 1
  • Ricardo P. Vieira
    • 1
  • Flávia A. D. Freitas
    • 4
  • Rodolpho M. Albano
    • 4
  • Alessandra M. Gonzalez
    • 2
  • Rodolfo Paranhos
    • 2
  • Guilherme Muricy
    • 3
  • Orlando B. Martins
    • 1
  1. 1.Instituto de Bioquímica Médica, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de InvertebradosMuseu Nacional, Universidade Federal do Rio de JaneiroSão CristóvãoBrazil
  4. 4.Departamento de BioquímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations