Advertisement

Marine Biology

, Volume 154, Issue 6, pp 1077–1084 | Cite as

A laboratory study of behavioral interactions of the Antarctic keystone sea star Odontaster validus with three sympatric predatory sea stars

  • James B. McClintock
  • Robert A. Angus
  • Christina Ho
  • Charles D. Amsler
  • Bill J. Baker
Original Paper

Abstract

The circumpolar sea star Odontaster validus is ubiquitous in the nearshore marine benthos of Antarctica. Despite its ecological importance, little is known of its behavioral interactions with other common sympatric sea stars. To examine these interactions we employed time-lapse video analyses conducted in a large laboratory tank (1.8 m diameter circular tank, 1,629 L). In each experimental trial, 34 adult O. validus were placed in a tight circular grouping on one side of the tank, and one adult individual of one of three common sympatric species of predatory sea star (Labidiaster annulatus, Diplasterias brandti, or Perknaster aurorae) was placed on the opposite side of the tank. Digital images of sea star movements were then captured at one min intervals over a 24 h period and aspects of sea star movements subsequently analyzed. Each 24 h treatment was replicated three times, as was a control treatment consisting only of O. validus. O. validus had significantly elevated levels of activity in the presence of P. aurorae when compared with the other two sea stars (potential chemically mediated response), and displayed a distinct “flight response” (change in direction and twofold to sixfold increase of speed) upon tactile contact with this species. Moreover, an “alarm response” was detected when individuals of O. validus that encountered a fleeing conspecific also fled the vicinity. In contrast, our results indicated that O. validus displays virtually no chemical or tactile behavioral responses to the large multi-armed L. annulatus and only weak tactile responses to D. brandti.

Keywords

Initial Speed Flight Response Western Antarctic Peninsula Alarm Response Macroinvertebrate Prey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank Margaret Amsler, Craig Aumack, and Philip Bucolo for assistance with field collections of sea stars. Isidro Bosch provided valuable assistance with taxonomy. We also wish to acknowledge the generous logistical support of those individuals employed by Raytheon Polar Services Company, especially Curt Smith and Christina Hammock who kindly provided assistance with video technology. This research was facilitated by National Science Foundation awards to CDA and JBM (OPP-0442769) and to BJB (OPP-0442857). This research was also supported by an Endowed Professorship in Polar and Marine Biology to JBM through the University of Alabama at Birmingham.

References

  1. Bauer JC (1976) Growth, maturation, and aggregation in the echinoid, Diadema antillarum. Bull Mar Sci 26:273–277Google Scholar
  2. Bernstein BB, Williams BEM, Mann KH (1981) The role of behavioral responses to predators in modifying urchin’s (Strongylocentrotus droebachiensis) destructive grazing and seasonal foraging patterns. Mar Biol (Berl) 63:39–49. doi: 10.1007/BF00394661 CrossRefGoogle Scholar
  3. Broom DM (1975) Aggregation behaviour of the brittle-star Ophiothrix fragilis. J Mar Biol Assoc UK 55:191–197CrossRefGoogle Scholar
  4. Campbell AC, Coppard S, D’Abreo C, Tudor-Thomas R (2001) Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol Bull 201:175–185. doi: 10.2307/1543332 CrossRefGoogle Scholar
  5. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114Google Scholar
  6. Dayton PK (1985) The structure and regulation of some South American kelp communities. Ecology 55:447–468Google Scholar
  7. Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr 44:105–128. doi: 10.2307/1942321 CrossRefGoogle Scholar
  8. Dayton PK, Rosenthal RJ, Mahaen LC, Antezana T (1977) Population structure and foraging biology of the predaceous Chilean asteroid Meyenaster gelatinosus and the escape biology of its prey. Mar Biol (Berl) 39:361–370. doi: 10.1007/BF00391939 CrossRefGoogle Scholar
  9. Dearborn JH (1977) Foods and feeding characteristics of antarctic asteroids and ophiuroids. In: Llano GA (ed) Adaptations within Antarctic Ecosystems. Gulf Publishing Company, Texas, pp 293–326Google Scholar
  10. Dearborn JH, Allen KW, Hureau JC, Arnaud PM (1972) Ecological and taxonomic studies of echinoderms, mollusks, and fishes from the Antarctic Peninsula. Antarct J US 7:80–82Google Scholar
  11. Dearborn JH, Edwards KC, Fratt DB (1991) Diet, feeding behavior, and surface morphology of the multi-armed Antarctic sea star Labidiaster annulatus (Echinodermata: Asteroidea). Mar Ecol Prog Ser 77:65–84. doi: 10.3354/meps077065 CrossRefGoogle Scholar
  12. Elewa AMT (ed) (2007) Predation in organisms: a distinct phenonmenon. Springer, BerlinGoogle Scholar
  13. Feder HM (1959) The food of the starfish, Pisaster ochraceus, along the California coast. Ecology 40:721–724. doi: 10.2307/1929828 CrossRefGoogle Scholar
  14. Gaymer CF, Himmelman JH, Johnson LE (2002) Effects of intra- and interspecific interactions on the feeding behavior of two subtidal sea stars. Mar Ecol Prog Ser 232:149–162. doi: 10.3354/meps232149 CrossRefGoogle Scholar
  15. Hagen NT, Andersen A, Stabell OB (2001) Alarm responses of the green sea urchin, Strongylocentrotus droebachiensis, induced by chemically labeled durophagous predators and simulated acts of predation. Mar Biol (Berl) 140:365–374Google Scholar
  16. Jangoux M (1982) Food and feeding mechanisms: Asteroida. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema Press, Rotterdam, pp 117–158Google Scholar
  17. Kidawa A (2001) Antarctic starfish, Odontaster validus, distinguish between fed and starved conspecifics. Polar Biol 24:408–410. doi: 10.1007/s003000100229 CrossRefGoogle Scholar
  18. Kidawa A (2005a) Behavioural and metabolic responses of the Antaractic sea star Odontaster validus to food stimuli of different concentrations. Polar Biol 28:449–455. doi: 10.1007/s00300-004-0705-2 CrossRefGoogle Scholar
  19. Kidawa A (2005b) The role of amino acids in phagostimulation in the shallow-water omnivorous Antarctic sea star Odontaster validus. Polar Biol 28:147–155. doi: 10.1007/s00300-004-0664-7 CrossRefGoogle Scholar
  20. Lawrence JM (1987) A functional biology of echinoderms. Croom Helm, LondonGoogle Scholar
  21. Lawrence JM (1991) A chemical alarm response in Pycnopodia helianthoides (Echinodermata: Asteroidea). Mar Behav Physiol 19:39–44CrossRefGoogle Scholar
  22. Levitan DR, Sewell MA, Chia F-S (1992) How distribution and abundance influence fertilization success in the sea urchin Strongylocentrotus franciscanus. Ecology 73:248–254. doi: 10.2307/1938736 CrossRefGoogle Scholar
  23. Mauzey KP, Birkeland P, Dayton PK (1968) Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region. Ecology 49:603–619. doi: 10.2307/1935526 CrossRefGoogle Scholar
  24. Mayo P, Mackie AM (1976) Studies of avoidance reactions in several species of predatory British seastars (Echinodermata: Asteroidea). Mar Biol (Berl) 38:41–49. doi: 10.1007/BF00391484 CrossRefGoogle Scholar
  25. McClintock JB (1985) Avoidance and escape responses of the sub-antarctic limpet Nacella edgari (Powell) (Mollusca: Gastropoda) to the sea star Anasterias perrieri (Smith) (Echinodermata: Asteroidea). Polar Biol 4:95–98. doi: 10.1007/BF00442906 CrossRefGoogle Scholar
  26. McClintock JB (1994) Trophic biology of antarctic shallow-water echinoderms. Mar Ecol Prog Ser 111:191–202CrossRefGoogle Scholar
  27. McClintock JB, Robnett TJ (1986) Size selective predation by the asteroid Pisaster ochraceus on the bivalve Mytilus californianus: a cost benefit analysis. Mar Ecol (Berl) 7:321–332CrossRefGoogle Scholar
  28. McClintock JB, Pearse JS, Bosch I (1988) Population structure and energetics of the common antarctic sea star Odontaster validus. Mar Biol (Berl) 99:235–246. doi: 10.1007/BF00391986 CrossRefGoogle Scholar
  29. McClintock JB, Amsler CD, Baker BJ, Van Soest R (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368. doi: 10.1093/icb/45.2.359 CrossRefGoogle Scholar
  30. McClintock JB, Amsler MO, Amsler CD, Baker BJ (2006) The biochemical composition, energy content, and chemical antifeedant defenses of the common Antarctic Peninsular sea stars Granaster nutrix and Neosmilaster georgianus. Polar Biol 29:615–623. doi: 10.1007/s00300-005-0097-y CrossRefGoogle Scholar
  31. Menge JL, Menge BA (1974) Role of resource allocation, aggression and spatial heterogeneity in coexistence of two competing intertidal starfish. Ecol Monogr 44:189–209. doi: 10.2307/1942311 CrossRefGoogle Scholar
  32. Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB (1994) The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol Monogr 64:249–286. doi: 10.2307/2937163 CrossRefGoogle Scholar
  33. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:67–75. doi: 10.1086/282400 CrossRefGoogle Scholar
  34. Paine RT (1980) Food webs: linkage, interaction strength and community structure. J Anim Ecol 49:667–685. doi: 10.2307/4220 CrossRefGoogle Scholar
  35. Paine RT (1995) A conversation on refining the concept of keystone species. Conserv Biol 9:962–964. doi: 10.1046/j.1523-1739.1995.09040962.x CrossRefGoogle Scholar
  36. Palumbi SR, Freed LA (1988) Agonistic interactions in a keystone predatory starfish. Ecology 69:1624–1627. doi: 10.2307/1941661 CrossRefGoogle Scholar
  37. Pearse JS (1965) Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common antarctic asteroid. Biol Antarctic Seas II. Antarct Res Ser 5:39–85Google Scholar
  38. Pearse JS (1969) Antarctic sea star. Austr Nat Hist (Paris, 1953) 16:234–238Google Scholar
  39. Peckham V (1964) Year-round scuba diving in the Antarctic. Polar Res 12:143–146CrossRefGoogle Scholar
  40. Pfeiffer W (1963) Alarm substances. Experientia Basel 19:113–168. doi: 10.1007/BF02171582 CrossRefGoogle Scholar
  41. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J Org Evolution 43:223–225. doi: 10.2307/2409177 CrossRefGoogle Scholar
  42. Rosenberg R, Selander E (2000) Alarm response in the brittle star Amphiura filiformis. Mar Biol (Berl) 136:43–48. doi: 10.1007/s002270050006 CrossRefGoogle Scholar
  43. Sloan NA (1984) Interference and aggregation: close encounters of the starfish kind. Ophelia 23:23–31CrossRefGoogle Scholar
  44. Sloan NA, Campbell AC (1982) Perception of food. In: Jangoux M, Lawrence JM (eds) Echinoderm Nutrition. Balkema Press, Rotterdam, pp 3–23Google Scholar
  45. Sloan NA, Northway SM (1982) Chemoreception by the asteroid Crossaster papposus (L.). J Exp Mar Biol Ecol 61:85–98. doi: 10.1016/0022-0981(82) 90023-5 CrossRefGoogle Scholar
  46. Smith RJF (1992) Alarm signals in fish. Rev Fish Biol Fish 2:33–63. doi: 10.1007/BF00042916 CrossRefGoogle Scholar
  47. Tokesha M (2002) Spatial distribution of a deep-sea crinoid Pentametracrinus tuberculatus in the Izu-Ogasawara Arc, Western Pacific. J Zool (Lond) 258:291–298. doi: 10.1017/S0952836902001413 CrossRefGoogle Scholar
  48. van Veldhuizen HD, Oakes VJ (1981) Behavioural responses of 7 species of asteroids to the asteroid predator Solaster dawsoni. Oecologia 48:214–220. doi: 10.1007/BF00347967 CrossRefGoogle Scholar
  49. Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258CrossRefGoogle Scholar
  50. Wobber DR (1975) Agonism in asteroids. Biol Bull 148:483–496. doi: 10.2307/1540524 CrossRefGoogle Scholar
  51. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  52. Zimmer RK, Ferrer RP (2007) Neuroecology, chemical defense and the keystone species concept. Biol Bull 213:207–224Google Scholar
  53. Zirpolo G (1921) Sull’omeofagismo dell’ Asterina gibbosa. Penn Boll Soc Nat Napoli 34:166–168Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • James B. McClintock
    • 1
  • Robert A. Angus
    • 1
  • Christina Ho
    • 1
  • Charles D. Amsler
    • 1
  • Bill J. Baker
    • 2
  1. 1.Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Chemistry and Center for Molecular Diversity in Drug Design, Discovery and DeliveryUniversity of South FloridaTampaUSA

Personalised recommendations