Marine Biology

, Volume 154, Issue 6, pp 1021–1029 | Cite as

UVR-induced photoinhibition of summer marine phytoplankton communities from Patagonia

  • Virginia E. Villafañe
  • Paul J. Janknegt
  • Marco de Graaff
  • Ronald J. W. Visser
  • Willem H. van de Poll
  • Anita G. J. Buma
  • E. Walter Helbling
Original Paper


During austral summer 2006, experiments were carried out to evaluate the effects of ultraviolet radiation (UVR, 280–400 nm) on carbon fixation of natural phytoplankton assemblages from Patagonia (Argentina). Surface water samples were collected (ca. 100 m offshore) at mid morning using an acid-cleaned (1 N HCl) dark container. The short-term impact of UVR (measured as radiocarbon incorporation) was immediately assessed by exposing samples to three artificial illumination treatments: PAR (400–700 nm), PAR + UV-A (320–700 nm), and PAR + UV-A + UV-B (280–700 nm). Pico-nanoplankton characterized the assemblages, and taxon-specific pigment fingerprinting combined with CHEMTAX and supplemented with microscopic observations showed varied proportions of diatoms, chlorophytes, and cyanobacteria throughout January–February 2006. Photosynthetic efficiency, as assessed through assimilation numbers, was high [between 4.4 and 10.4 μg C (μg chl-a)−1 h−1], and it was probably favored by the supply of inorganic nutrients from the Chubut River. UVR-induced photoinhibition appeared to be related to the taxonomic composition: in general, higher photoinhibition was observed when diatoms dominated, whereas this was lower when samples were dominated by chlorophytes. Our data suggest that xanthophyll pigments might have provided only limited protection in these already highlighted acclimated assemblages.


Phytoplankton Xanthophyll Dinoflagellate Fucoxanthin Total Ozone Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the United Nations—Global Environmental Fund (PNUD B-C-39), Agencia Nacional de Promoción Científica y Tecnológica—ANPCyT (PICT 2005-32034), NWO/MEERVOUD (Grant No. 836.01.040 to Buma), NWO/NAAP (Grant No. 851.20.015 to van de Poll), and Fundación Playa Unión. We thank E. Barbieri, R. Flores, and R. Gonçalves for their help during experiments. We also thank the comments and suggestions of two anonymous reviewers that helped us to improve this manuscript. This is contribution number 112 of the Estación de Fotobiología Playa Unión. The experiments comply with the current Argentinean laws.


  1. Banaszak AT (2003) Photoprotective physiological and biochemical responses of aquatic organisms. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 329–356Google Scholar
  2. Banaszak AT, Neale PJ (2001) Ultraviolet radiation sensitivity of photosynthesis in phytoplankton from an estuarine environment. Limnol Oceanogr 46:592–603CrossRefGoogle Scholar
  3. Barbieri ES, Villafañe VE, Helbling EW (2002) Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr 47:1648–1655CrossRefGoogle Scholar
  4. Bouchard JN, Campbell DA, Roy S (2005) Effects of UV-B radiation on the D1 protein cycle of natural phytoplankton communities from three latitudes (Canada, Brazil and Argentina). J Phycol 41:273–286. doi: 10.1111/j.1529-8817.2005.04126.x CrossRefGoogle Scholar
  5. Buma AGJ, Boelen P, Jeffrey WH (2003) UVR-induced DNA damage in aquatic organisms. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 291–327Google Scholar
  6. Buma AGJ, Helbling EW, de Boer MK, Villafañe VE (2001) Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J Photochem Photobiol B Biol 62:9–18. doi: 10.1016/S1011-1344(01)00156-7 CrossRefGoogle Scholar
  7. Commendatore M, Esteves JL (2004) Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull 48:910–918. doi: 10.1016/j.marpolbul.2003.11.015 CrossRefGoogle Scholar
  8. Demers S, Roy S, Gagnon R, Vignault C (1991) Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar Ecol Prog Ser 76:185–193. doi: 10.3354/meps076185 CrossRefGoogle Scholar
  9. Demming-Adams B (1990) Carotenoids and photoprotection in plants: a role for the carotenoid zeaxanthin. Biochim Biophys Acta 1020:1–24. doi: 10.1016/0005-2728(90) 90088-L CrossRefGoogle Scholar
  10. Dimier C, Corato F, Tramontano F, Brunet C (2007) Photoprotection and xanthophyll-cycle activity in three marine diatoms. J Phycol 43:937–947. doi: 10.1111/j.1529-8817.2007.00381.x CrossRefGoogle Scholar
  11. Falkowski PG (1981) Light shade adaptation and assimilation numbers. J Plankton Res 3(2):203–216. doi: 10.1093/plankt/3.2.203 CrossRefGoogle Scholar
  12. Furgal JA, Smith REH (1997) Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive status. Can J Fish Aquat Sci 54:1659–1667. doi: 10.1139/cjfas-54-7-1659 CrossRefGoogle Scholar
  13. Gao K, Li G, Helbling EW, Villafañe VE (2007) Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem Photobiol 83:802–809CrossRefGoogle Scholar
  14. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  15. Gonçalves RJ, Barbieri EB, Villafañe VE, Helbling EW (2007) Motility of Daphnia spinulata as affected by solar radiation throughout an annual cycle in mid-latitudes of Patagonia. Photochem Photobiol 83:824–832CrossRefGoogle Scholar
  16. Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285. doi: 10.1039/b700020k CrossRefGoogle Scholar
  17. Helbling EW, Barbieri ES, Marcoval MA, Gonçalves RJ, Villafañe VE (2005) Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochem Photobiol 81:807–818. doi: 10.1562/2005-03-02-RA-452R.1 CrossRefGoogle Scholar
  18. Helbling EW, Buma AGJ, de Boer MK, Villafañe VE (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211:43–49. doi: 10.3354/meps211043 CrossRefGoogle Scholar
  19. Helbling EW, Chalker BE, Dunlap WC, Holm-Hansen O, Villafañe VE (1996) Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101. doi: 10.1016/0022-0981(96)02591-9 CrossRefGoogle Scholar
  20. Helbling EW, Santamarina JM, Villafañe VE (1992) Chubut river estuary (Argentina): estuarine variability under different conditions of river discharge. Rev Biol Mar 27:73–90Google Scholar
  21. Holm-Hansen O, Helbling EW (1995) Técnicas para la medición de la productividad primaria en el fitoplancton. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Concepción, pp 329–350Google Scholar
  22. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Permanent Int pour l’ Explor de la Mer 30:3–15CrossRefGoogle Scholar
  23. Kopczynska EE (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. J Plankton Res 14(8):1031–1054. doi: 10.1093/plankt/14.8.1031 CrossRefGoogle Scholar
  24. Kudoh S, Imura S, Kashino Y (2003) Xanthophyll-cycle of ice algae on the sea ice bottom in Saroma Ko lagoon, Hokkaido, Japan. Polar Biosci 16:86–97Google Scholar
  25. Mackey MD, Higgins HW, Mackey D, Wright S (1997) CHEMTAX users manual: a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton pigments. CSIRO Marine Laboratories Report 229, Hobart, 42 ppGoogle Scholar
  26. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283. doi: 10.3354/meps144265 CrossRefGoogle Scholar
  27. Marcoval MA, Villafañe VE, Helbling EW (2007) Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. J Photochem Photobiol B Biol 89:78–87. doi: 10.1016/j.jphotobiol.2007.09.004 CrossRefGoogle Scholar
  28. Mohovic B, Gianesella SMF, Laurion I, Roy S (2006) Ultraviolet-B photoprotection efficiency of mesocosm-enclosed natural phytoplankton communities from different latitudes: Rimouski (Canada) and Ubatuba (Brazil). Photochem Photobiol 82:952–961. doi: 10.1562/2005-09-30-RA-707 CrossRefGoogle Scholar
  29. Perillo GME, Piccolo MC, Scapini MC, Orfila J (1989) Hydrography and circulation of the Chubut river estuary (Argentina). Estuaries 12(3):186–194. doi: 10.2307/1351823 CrossRefGoogle Scholar
  30. Richter P, Häder DP, Gonçalves RJ, Marcoval MA, Villafañe VE, Helbling EW (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83:810–817CrossRefGoogle Scholar
  31. Roy S (2000) Strategies for the minimization of UV-induced damage. In: De Mora SJ, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 177–205CrossRefGoogle Scholar
  32. Sastre AV, Santinelli NH, Otaño SH, Ivanissevich ME, Ayestarán MG (1994) Diatom blooms and their relation to water supply. Verh Int Ver Theor Angew Limnol 25:1974–1978Google Scholar
  33. Sobrino C, Neale PJ, Montero O, Lubián LM (2005) Biological weighting function for xanthophyll de-epoxidation induced by ultraviolet radiation. Physiol Plant 125:41–51. doi: 10.1111/j.1399-3054.2005.00538.x CrossRefGoogle Scholar
  34. van de Poll WH, Alderkamp A-C, Janknegt PJ (2006) Photoacclimation modulates excessive photosynthetically active and ultraviolet radiation effects in a temperate and an Antarctic marine diatom. Limnol Oceanogr 51:1239–1248CrossRefGoogle Scholar
  35. Van Leeuwe MA, Villerius LA, Roggeveld J, Visser RJW, Stefels J (2006) An optimized method for automated analysis of algal pigments by HPLC. Mar Chem 102:267–275. doi: 10.1016/j.marchem.2006.05.003 CrossRefGoogle Scholar
  36. Vernet M (2000) Effects of UV radiation on the physiology and ecology of marine phytoplankton. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, Cambridge, pp 237–278CrossRefGoogle Scholar
  37. Villafañe VE, Barbieri ES, Helbling EW (2004) Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. J Plankton Res 26:167–174. doi: 10.1093/plankt/fbh011 CrossRefGoogle Scholar
  38. Villafañe VE, Helbling EW, Santamarina J (1991) Phytoplankton blooms in the Chubut river estuary (Argentina): Influence of stratification and salinity. Rev Biol Mar 26:1–20Google Scholar
  39. Villafañe VE, Reid FMH (1995) Métodos de microscopía para la cuantificación del fitoplancton. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, Concepción, pp 169–185Google Scholar
  40. Villafañe VE, Sundbäck K, Figueroa FL, Helbling EW (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 357–397Google Scholar
  41. Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Virginia E. Villafañe
    • 1
  • Paul J. Janknegt
    • 2
  • Marco de Graaff
    • 2
  • Ronald J. W. Visser
    • 2
  • Willem H. van de Poll
    • 2
  • Anita G. J. Buma
    • 2
  • E. Walter Helbling
    • 1
  1. 1.Estación de Fotobiología Playa Unión y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)RawsonArgentina
  2. 2.Department of Ocean Ecosystems, Centre for Ecological and Evolutionary StudiesUniversity of GroningenHarenThe Netherlands

Personalised recommendations