Marine Biology

, Volume 154, Issue 6, pp 1009–1019 | Cite as

Ecological implications of the presence of the tube-building polychaete Lanice conchilega on soft-bottom benthic ecosystems

  • Gert Van HoeyEmail author
  • Katja Guilini
  • Marijn Rabaut
  • Magda Vincx
  • Steven Degraer
Original Paper


The common tube-building polychaete Lanice conchilega is known as a habitat structuring species and can form dense aggregations. The effects of L. conchilega on the surrounding benthic community have received little attention, especially in subtidal areas. Therefore, the presence of L. conchilega in different habitats in the North Sea and its effect on the abundance, species richness, diversity and community structure in these habitats are evaluated in the present paper, based on data from the ICES North Sea Benthos Survey of 2000. Lanice conchilega has a wide geographical distribution and a low habitat specialization, but optimally occurs in shallow fine sands. In the present study, the presence of L. conchilega resulted in a density increase and a significant (positive) correlation of the benthos density with the density of L. conchilega. Furthermore, the species richness (number of species) increased with increasing density of L. conchilega. This trend was, however, not consistent: the number of species reached more or less an asymptotic value or even decreased after reaching a critical density of L. conchilega (>500–1,000 ind/m²), as observed in shallow fine sands. The same overall pattern was detected concerning the expected number of species. The N1-diversity index showed similar or slightly higher values in L. conchilega patches compared to patches without L. conchilega. From the results of the community analysis, it can be concluded that the species, which were responsible for the increase of the diversity, belonged to the overall species-pool of that habitat. The effects on density and diversity differed between the four discerned habitats (shallow muddy sand, shallow fine sand, shallow medium sand and deep fine sand), and were most pronounced in shallow fine sands. These patterns can be attributed to the habitat structuring capacity of L. conchilega. The mechanisms responsible for the increase of the habitat quality in patches of L. conchilega can be summarized as (1) changes in the hydrodynamics, (2) increases of the habitat stability and oxygen supply, and (3) a creation of habitat heterogeneity in a uniform environment. In this way, L. conchilega alters the habitat characteristics and affects other organisms, and can therefore even be considered as an ecosystem engineer. In other words, L. conchilega patches are responsible for an increased habitat quality in an otherwise uniform habitat, which results in a higher survival of the surrounding benthic species.


Species Richness Fine Sand German Bight Medium Sand Benthic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study would have been impossible without the consent to use the data of the North Sea Benthos Survey of 2000. Therefore, the authors want to thank the data contributors and affiliated institutes for their data contributions: J. Aldridge (Cefas), S. Cochrane (NIVA), S. Degraer (Ghent University), N. Desroy (IFREMER), J.-M. Dewarumez (Wimereux/Lille University), G. Duineveld (NIOZ), H. Hillewaert (ILVO), I. Kröncke (Senckenberg), S. Nehring (AeT-umweltplanung), R. Newell (MES Ltd on behalf of a dredging consortium), E. Oug (NIVA), T. Pohlmann (Hamburg University), E. Rachor (AWI), H. Rees (Cefas), M. Robertson (FRS), H. Rumohr (Kiel University), J. Van Dalfsen (TNO). Besides, the following persons, M. Bergman (NIOZ), T. Bolam (Cefas), J. Craeymeersch (IMARES), G. Duineveld (NIOZ), J. Eggleton (Cefas), H. Hillewaert (ILVO), G. Irion (Senckenberg), P. Kershaw (Cefas), I. Kröncke (Senckenberg), M. Lavaleye (NIOZ), C. Mason (Cefas), E. Rachor (AWI), H. Rees (Cefas), H. Reiss (Gröningen University), H. Rumohr (Kiel University), M. Schratzberger (Cefas), R. Smith (Cefas), E. Vanden Berghe (VLIZ), W. Willems (Ghent University), have contributed via the ICES SG NSBP 2000 to the development of this paper. The first author acknowledges a grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT, Flemish Government). The third author acknowledges an aspirant grant provided by the FWO-Vlaanderen, Belgium. The authors also want to thank Sofie Vandendriessche and the reviewers for making improvements to earlier drafts.


  1. Bolam SG, Fernandes TF (2002) Dense aggregations of tube-building polychaetes: response to small-scale disturbances. J Exp Mar Biol Ecol 269:197–222CrossRefGoogle Scholar
  2. Buhr K-J (1976) Suspension-feeding and assimilation efficiency in Lanice conchilega (Polychaeta). Mar Biol 38:373–383CrossRefGoogle Scholar
  3. Buhr K-J, Winter JE (1976) Distribution and maintenance of a Lanice conchilega association in the Weser estuary (FRG), with special reference to the suspension-feeding behaviour of Lanice conchilega. In: Keegan BF, Ceidigh PO, Boaden PJS (eds) Biology of benthic organisms. 11th European symposium on marine biology, Gallaway. Pergamon Press, Oxford, pp 101–113Google Scholar
  4. Callaway R (2003a) Juveniles stick to adults: recruitment of the tube-dwelling polychaete Lanice conchilega (Pallas, 1766). Hydrobiologia 503:121–130CrossRefGoogle Scholar
  5. Callaway R (2003b) Long-term effects of imitation polychaete tubes on benthic fauna: they anchor Mytilus edulis (L.) banks. J Exp Mar Biol Ecol 283:115–132CrossRefGoogle Scholar
  6. Callaway R (2006) Tube worms promote community change. Mar Ecol Prog Ser 308:49–60CrossRefGoogle Scholar
  7. Carey AD (1987) Sedimentological effects and palaeoecological implications of the tube-building polychaete Lanice conchilega (Pallas). Sedimentology 34:49–66CrossRefGoogle Scholar
  8. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth Marine Laboratory, UKGoogle Scholar
  9. Conover WJ (1971) Practical non parametric statistics. Wiley, New YorkGoogle Scholar
  10. Degraer S, Van Lancker V, Moerkerke G, Van Hoey G, Vanstaen K, Vincx M, Henriet J-P (2002) Evaluation of the ecological value of the foreshore: habitat-model and macrobenthic side-scan sonar interpretation: extension along the Belgian Coastal Zone. Technical report. Ministry of the Flemish Community, Environment and Infrastructure. Department Waterways and Marine Affairs Administration, Coastal Waterways, BelgiumGoogle Scholar
  11. Degraer S, Wittoeck J, Appeltans W, Cooreman K, Deprez T, Hillewaert H, Hostens K, Mees J, Vanden Berghe E, Vincx M (2006) The macrobenhos atlas from the Belgian Part of the North Sea. Federaal Wetenschapsbeleid D/2005/1191/5, pp 164Google Scholar
  12. Dittmann S (1999) Biotic interactions in a Lanice conchilega-dominated tidal flat. In: Dittmann S (ed) The Wadden Sea ecosystem. Springer, Berlin, pp 153–162CrossRefGoogle Scholar
  13. Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257CrossRefGoogle Scholar
  14. Eckman JE, Nowell ARM, Jumars PA (1981) Sediment destabilization by animal tubes. J Mar Res 39:361–374Google Scholar
  15. Feral P (1989) Influence des populations de Lanice conchilega (Pallas) (Annelida, Polychaeta) sur la sedimentation sableuse intertidale de deux plages bas-nomandes (France). Bull Soc Geol Fr 8:1193–1200Google Scholar
  16. Forster S, Graf G (1995) Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianassa subterraneai and ‘piston-pumping’ by Lanice conchilega. Mar Biol 123:335–346CrossRefGoogle Scholar
  17. Hartmann-Schröder G (1996) Annelida, Borstenwürmer, Polychaeta—Tierwelt Deutschlands, Teil 58. Veb Gustav Fischer Verlag, Jena, HamburgGoogle Scholar
  18. Heuers J, Jaklin S, Zühlke R, Dittmann S, Günther C-P, Hildenbrandt H, Grimm V (1998) A model on the distribution and abundance of the tube-building polychaete Lanice conchilega (Pallas, 1766) in the intertidal of the Wadden Sea. Verh Ges Okol 28:207–215Google Scholar
  19. Hild A, Günter C-P (1999) Ecosystem engineers: Mytilus edulis and Lanice conchilega. In: Dittmann S (ed) The Wadden Sea ecosystem. Springer, Berlin, pp 43–49Google Scholar
  20. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  21. Holt TJ, Rees EI, Hawkins SJ, Seed R (1998) Biogenic reefs, vol IX. An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Technical report, Scottish Association for Marine Science (UK Marine SACs Project)Google Scholar
  22. Hurlbert SH (1971) The non concept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  23. ICES (2004) Report of the study group on North Sea benthos project 2000 (SGNSBP), 29 March–1 April 2004, Wilhelmshaven, Germany. ICES report CM 2004/E:05Google Scholar
  24. Jones GJ, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. OIKOS 69:373–386CrossRefGoogle Scholar
  25. Künitzer A, Duineveld GCA, Basford D, Dewarumez JM, Dörjes J, Eleftheriou A, Heip C, Herman PMJ, Kingston P, Niermann U, Rumohr H, de Wilde PAWJ (1992) The benthic infauna of the North Sea: species distribution and assemblages. ICES J Mar Sci 49:127–143CrossRefGoogle Scholar
  26. Luckenbach MW (1986) Sediment stability around animal tubes: the roles of hydrodynamics processes and biotic activity. Limnol Oceanogr 31(4):779–787CrossRefGoogle Scholar
  27. McGlade JM (2002) The North Sea large marine ecosystem. In: Sherman K, Skjoldal HR (eds) Large marine ecosystems of the North Atlantic—changing states and sustainability, vol Forthcoming volume. Elsevier, Amsterdam, pp 339–412CrossRefGoogle Scholar
  28. Morris HM (1955) A new concept of flow in rough conduits. Trans Am Soc Civil Eng 120:373–398Google Scholar
  29. Peters SWM, Eleveld M, Pasterkamp R, van der Woerd H, DeVolder M, Jans S, Park Y, Ruddick K, Block T, Brockmann C, Doerffer R, Krasemann H, Schoenfeld W, Jorgenson PV, Tilstone G, Moore G, Sorensen K, Hokedal J, Aas E (2005) Atlas of chlorophyll—a concentration for the North Sea based on MERIS imagery of 2003. Technical report. Vrije Universiteit Amsterdam, The NetherlandsGoogle Scholar
  30. Qian PY (1999) Larval settlement of polychaetes. Hydrobiology 402:239–253CrossRefGoogle Scholar
  31. Rabaut M, Guilini K, Van Hoey G, Vincx M, Degraer S (2008) A bio-engineered soft-bottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuar Coast Shelf Sci 75:525–536CrossRefGoogle Scholar
  32. Rees H, Cochrane S, Craeymeersch J, de Kluijver M, Degraer S, Desroy N, Dewarumez J-M, Duineveld G, Essink K, Hillewaert H, Kilbride R, Kröncke I, Nehmer P, Rachor E, Reiss H, Robertson M, Rumohr H, Vanden Berghe E, Van Hoey G (2002) The North Sea benthos project: planning, management and objectives. ICES report, C.M. L(9)Google Scholar
  33. Rees EIS, Bergmann M, Galanidi M, Hinz H, Shucksmith R, Kaiser MJ (2005) An enriched Chaetopterus tube mat biotope in the eastern English Channel. J Mar Biol Assoc UK 85:323–326CrossRefGoogle Scholar
  34. Rees HL, Eggleton JD, Rachor E, Vanden Berghe E (eds) (2007) Structure and dynamics of the North Sea benthos. ICES cooperative research report no. 288, p 258Google Scholar
  35. Ropert M, Dauvin J-C (2000) Renewal and accumulation of a Lanice conchilega (Pallas) population in the bay des Veys, western Bay of Seine. Oceanol Acta 23(4):529–546CrossRefGoogle Scholar
  36. Seys L, Musschoot T (2001) Lanice conchilega: het leven en de voedingswijze van een kokerbouwende polychaet, report. University of Ghent , BelgiumGoogle Scholar
  37. Van Hoey G (2006) Spatio-temporal variability within the macrobenthic Abra alba community, with emphasis on the structuring role of Lanice conchilega. Ph.D. thesis. University of Ghent, BelgiumGoogle Scholar
  38. Van Hoey G, Vincx M, Degraer S (2006) Some recommendations for an accurate estimation of Lanice conchilega density based on tube counts. Helgoland Mar Res 60:317–321CrossRefGoogle Scholar
  39. Willems W, Goethals P, Van den Eynde D, Van Hoey G, Van Lancker V, Verfaille E, Vincx M, Degraer S (2008) Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega (Pallas, 1766). Ecol Model 212:74–79CrossRefGoogle Scholar
  40. Woodin SA (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59:274–284CrossRefGoogle Scholar
  41. Ziegelmeier E (1952) Bedachtungen über den Röhrenbau von Lanice conchilega (Pallas) im experiment und am natürlichen standort. Helgoland Meeresuntersuchingen 4:107–129CrossRefGoogle Scholar
  42. Zühlke R (2001) Polychaete tubes create ephemeral community patterns: Lanice conchilega (Pallas, 1766) associations studied over six years. J Sea Res 46:261–272CrossRefGoogle Scholar
  43. Zühlke R, Blome D, Heinz van Bernem K, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenb Marit 29(1):131–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gert Van Hoey
    • 1
    • 2
    Email author
  • Katja Guilini
    • 1
  • Marijn Rabaut
    • 1
  • Magda Vincx
    • 1
  • Steven Degraer
    • 1
  1. 1.Biology Department, Marine Biology SectionGhent University (UGent)GhentBelgium
  2. 2.ILVO Institute for Agriculture and Fishery Research, Unit Animal Sciences, FisheriesOstendBelgium

Personalised recommendations