Marine Biology

, Volume 154, Issue 3, pp 533–545 | Cite as

Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean)

  • Sergio RossiEmail author
  • Georgios Tsounis
  • Covadonga Orejas
  • Tirma Padrón
  • Josep-Maria Gili
  • Lorenzo Bramanti
  • Núria Teixidó
  • Julian Gutt
Research Article


The distribution and population structure of the eurybathic gorgonian Corallium rubrum were studied off Cap de Creus (Costa Brava, Northwestern Mediterranean Sea). Red coral is endemic to the Mediterranean Sea and the adjacent NE Atlantic coast, where it has been over exploited for centuries. This study presents, the first quantitative data on the spatial distribution and structure of a population extending between 50 (common SCUBA limits) and 230 m depth, and compared it with shallow populations previously studied in the same area. Different remotely operated vehicles (ROV) and two methodological approaches were employed during four cruises between 2002 and 2006: 1-Extensive surveys: sea to coast transects in which red coral density and patch frequency were recorded; 2-Intensive surveys, in which parameters describing colony morphology were recorded. Most of the hard substrate between 50 and 85 m depth was inhabited by red coral colonies, showing a patch frequency of 8.3 ± 7.9 SD patches per 100 m-transect (total transect area: 34 m2), and within-patch colony densities of 16–376 colonies m−2 (mean of 43 ± 53 colonies m−2). Below 120 m depth red coral was less abundant, and rather than forming dense patches as in shallow water, isolated colonies were more common. The population structure differed between sites that are easily accessible to red coral fishermen, and remote ones (both at similar depth, 60–80 m), as colonies in easily accessible locations were smaller in height and diameter, and showed a less developed branching pattern. At shallower locations (10–50 m depth) the population structure was significantly different from those at deeper locations, due to the heavy harvesting pressure they are exposed to in the shallows. Twenty-five to forty-six percentage of the deeper colonies were taller than 6 cm, while only 7–16% of the shallow water colonies exceeded 6 cm colony height. Forty-six to seventy-nine percentage of the colonies in deeper waters were large enough to be legally harvested, while only 9–20% of the shallow water colonies met the 7 mm legal basal diameter to be collected. The branching pattern was also better developed in deeper colonies, as up to 16% of the colonies showed fourth order branches, compared to less than 1% of the shallow water colonies (of which 96% consisted of only one single branch). The results thus confirm that C. rubrum populations above 50 m depth are exposed to a higher harvesting intensity than deeper populations in the same area.


Remotely Operate Vehicle Order Branch Shallow Zone Colony Density Mass Mortality Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the three anonymous referees that greatly improved the final version of the manuscript. We also gratefully acknowledge the helpful advice and location consulting by A. Plujà (and other anonymous red coral fishermen) that were decisive in our ROV surveys, and gave us important information about red coral in this area. We are also grateful with the RV García del Cid and the Bon Geni boat crews for the assistance during the cruises. We are grateful to D. Diaz de Quijano and L. Vera for their help in the processing of photographic samples. This study was funded by European funds to the Department of Fisheries and Agriculture of the Government of Catalonia in Spain, PCC:30103, European project HERMES (Contract Number GOCE-CT-2005-511234-I) and the MEC project Deep-Coral CTM2005-07756-C02-01/MAR.


  1. Abbiati M, Buffoni G, Caforio G, Di Cola G, Santangelo G (1992) Harvesting, predation and competition effects on a red coral population. Neth J Sea Res 30:219–228CrossRefGoogle Scholar
  2. Abbiati M, i Santangelo G, Novelli N (1993) Genetic variation within and between two Tyrrhenian populations of the Mediterranean alcyonarian Corallium rubrum. Mar Ecol Prog Ser 95:245–250CrossRefGoogle Scholar
  3. Ballesteros E (2006) Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annual Rev 44:123–195Google Scholar
  4. Beiring EA, Lasker HR (2000) Egg production by colonies of a gorgonian coral. Mar Ecol Progr Ser 196:169–177CrossRefGoogle Scholar
  5. Bramanti L (2003) Dinamica di Populazione (ed) Adattamenti demografici di una popolazione costiera di corallo rosso (Corallium rubrum L. 1758) con particolare riferimento al reclutamento. Phd Thesis, Universita´ degli studi di Pisa (In italian)Google Scholar
  6. Bramanti L, Magagnini G, Santangelo G (2003) Settlement and recruitment: the first stages in the life cycle of two epibenthic suspension feeders (Corallium rubrum and Anomia ephippium). Ital J Zool 70:175–178Google Scholar
  7. Bramanti L, Magagnini G, de Maio L, Santangelo G (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L. 1758), a four year study. J Exp Mar Biol Ecol 314:69–78CrossRefGoogle Scholar
  8. Bramanti L, Rossi S, Tsounis G, Gili JM, Santangelo G (2007). Recruitment and early survival of red coral on settlement plates: some clues for demography and restoration. Hydrobiologia 580:219–224CrossRefGoogle Scholar
  9. Carpine C, Grasshoff M (1975) Les gorgonaires de la Mediterranée. Bull Instit Océanogr Mon 71:1–140Google Scholar
  10. Cattaneo-Vietti R, Bavestrello G, Senes L (1993) Red coral from the Portofino promontory (Ligurian sea). In: Cicogna F, Cattaneo-Vietti R (eds) Red coral in the Mediterranean Sea: art, history and science. Ministerio delle Risorse Agricole, Alimentari e Forestali, Roma, pp 109–130Google Scholar
  11. Cebrián J, Duarte CM, Pascual J (1996) Marine climate on the Costa Brava (northwestern Mediterranean) littoral. Publ Espec Inst Esp Ocenogr 22:9–21Google Scholar
  12. Chintiroglou H, Dounas-Koukouras C (1989) The presence of Corallium rubrum (Linnaeus, 1758) in the eastern Mediterranean Sea. Mitt aus dem Zoolog Mus Berlin, 65:145–149Google Scholar
  13. Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 115:157–270CrossRefGoogle Scholar
  14. Coma R, Pola E, Ribes M, Zabala M (2004) Long-term assessment of temperate octocoral mortality patterns, protected versus unprotected areas. Ecol Applic 14:1466–1478CrossRefGoogle Scholar
  15. Coma R, Zabala M, Gili JM (1995) Sexual reproductive effort in the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser 117:185–192CrossRefGoogle Scholar
  16. Coma R, Linares C, Ribes M, Diaz D, Garrabou J, Ballesteros E (2006) Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar Ecol Prog Ser 327:51–60CrossRefGoogle Scholar
  17. Cupido R, Cocito S, Sgorbini S, Bordone A, Santangelo G (2007) Response of a gorgonian (Paramuricea clavata) population to mass mortality events: recovery or loss? Aquat Conserv Mar Fresh Ecosyst. doi: 10.1002/aqc.904
  18. del Gaudio D, Fortunato G, Borriello M, Gili JM, Buono P, Calcagno G, Salvatore F, Sacchetti L (2004) Genetic typing of Corallium rubrum. Mar Biothec 6:511–515CrossRefGoogle Scholar
  19. García-Rodríguez M, Massò C (1986) Estudio biométrico de poblaciones de coral rojo (Corallium rubrum L.) del litoral de Gerona (NE de España). Bol Inst Esp Oceanogr 3(4):61–64Google Scholar
  20. Garrabou J, Harmelin G (2002) A 20-year study on life-history traits of a harvested long-lived temperate coral in the NW Mediterranean: insights into conservation and management needs. J Anim Ecol 71:966–978CrossRefGoogle Scholar
  21. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272CrossRefGoogle Scholar
  22. Garrabou J, Ballesteros E, Zabala M (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Est Coast Shelf Sci 55:493–508CrossRefGoogle Scholar
  23. Giannini F, Gili JM, i Santangelo G (2003) Relationships between the spatial distribution of red coral Corallium rubrum and coxisting suspension feeders at the Medes Islands marine protected area (Spain). Ital J Zool 70:233–239CrossRefGoogle Scholar
  24. Gili JM, Ros J (1985) Study and cartography of the benthic communities of the Medes Islands (NE Spain). PSZNI Mar Ecol 6:219–238Google Scholar
  25. Grigg RW (2001) Black coral: history of a sustainable fishery in Hawaii. Pac Sci 55:291–299CrossRefGoogle Scholar
  26. Harland AD, Davies PS, Fixter LM (1992) Lipid content of some Caribean corals in relation to depth and light. Mar Biol 113:357–361CrossRefGoogle Scholar
  27. Jackson JBC (1977) Competition on marine hard substrata: the adaptative significance of solitary and colonial strategies. Am Nat 111:743–767CrossRefGoogle Scholar
  28. Jackson JBC, Sala E (2001). Unnatural oceans. In: A marine science odyssey into the 21st century. J.M. Gili, Pretus J.L. Packard T.T. (eds). Sci Mar 65 (Suppl 2):273–281Google Scholar
  29. Jones CJ, Lawton JH, Shachak M (1994) Organisms as ecosystems engineers. Oikos 69:373–386CrossRefGoogle Scholar
  30. Jonnson LG, Nilsson PG, Floruta F, Lundälv T (2004) Distributional patterns of macro- and megafauna associated with a reef of the cold-water coral Lophelia pertusa on the Swedish west coast. Mar Ecol Prog Ser 284:163–171CrossRefGoogle Scholar
  31. Kapela W, Lasker HR (1999) Size-dependent reproduction in the Caribbean gorgonian Pseudoplexaura porosa. Mar Biol 135:107–114CrossRefGoogle Scholar
  32. Linares C, Hereu B i Zabala M (2003) Avaluació dels danys ocasionats per un espoli de corall vermell a la Cala Fredosa (Reserva Natural del Cap de Creus; Parc Natural del Cap de Creus) l’abril de 2003. Informe del Departament d’Ecologia, 13 pp (In catalan)Google Scholar
  33. Linares C, Coma R, Diaz D, Zabala M, Hereu B, Dantart L (2005) Immediate and delayed effects of a mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean Sea. Mar Ecol Prog Ser 305:127–137CrossRefGoogle Scholar
  34. Linares C, Doak DF, Coma R, Díaz D, Zabala M (2007) Life history and variability of a long-lived marine invertebrate: the octocoral Paramuricea clavata. Ecology 88:918–928PubMedCrossRefGoogle Scholar
  35. Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432CrossRefGoogle Scholar
  36. Mortensen PB, Buhl-Mortensen L (2004) Distribution of deep-water gorgonian corals in relation to bentic habitat features in the Northeast Channel (Atlantic Canada). Mar Biol 144:1223–1238CrossRefGoogle Scholar
  37. Ninio R, Delean S, Osborne K, Sweatman H (2003) Estimating cover of benthic organisms from underwater video images: variability associated with multiple observers. Mar Ecol Prog Ser 265:107–116CrossRefGoogle Scholar
  38. Orejas C, López-González PJ, Gili JM, Teixidó N, Gutt J, Arntz WE (2002) Distribution and reproductive ecology of the Antarctic octocoral Ainigmaptilon antarcticus in the Weddell sea. Mar Ecol Prog Ser 231:101–114CrossRefGoogle Scholar
  39. Picciano M, Ferrier-Pagès C (2007) Ingestion of pico- and nano-plankton in the Mediterranean red coral Corallium rubrum. Mar Biol 150:773–782CrossRefGoogle Scholar
  40. Pyle RL (2000) Assessing undiscovered fish biodiversity of deep coral reefs using advanced self-contained diving technology. Mar Technol J 34(4):82–91CrossRefGoogle Scholar
  41. Riedl R (1984) Fauna und flora des mittelmeers. Paul Parey, HamburgGoogle Scholar
  42. Roark EB, Guilderson TP, Dunbar RB, Ingram BL (2006) Radiocarbon based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1–14CrossRefGoogle Scholar
  43. Rodríguez-Lanetty M, Marquez LM, Losada F (2003) Changes in gorgonian morphology along a depth gradient at Isla Alcatraz, San Esteban National Park, Venezuela. Bull Mar Sci 72:1019–1023Google Scholar
  44. Rossi S (2002) Environmental factors affecting the trophic ecology of benthic suspension feeders. PhD thesis, University of BarcelonaGoogle Scholar
  45. Rossi S, Gili JM (2003) Estudi I seguiment del estat de las poblacions de corall vermell Corallium rubrum al litoral Català. In: Proceedings of “Nuove frontiere per in Corallo Rosso”. Collana Porto Conte Richerche, Alghero, 4, 35–70 (In catalan)Google Scholar
  46. Rossi S, Gili JM (2005) Temporal variation and composition of near-bottom seston features in a Mediterranean coastal area. Est Coast Shelf Sci 65:385–395CrossRefGoogle Scholar
  47. Rossi S, Tsounis G (2007) Temporal and spatial variation in protein, carbohydrate, and lipid levels in Corallium rubrum (anthozoa, octocorallia). Mar Biol 152:429–439CrossRefGoogle Scholar
  48. Rossi S, Grémare A, Gili JM, Amouroux JM, Jordana E, Vétion G (2003) Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Coast Est Shelf Sci 58:423–434CrossRefGoogle Scholar
  49. Sala E, Garrabou J, Zabala M (1996) Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Mar Biol 126:451–459CrossRefGoogle Scholar
  50. Santangelo G, Abiatti M (2001) Red Coral: conservation and management of an over-exploited Mediterranean species. Aquat Conserv Mar Fresh Ecosyst 11:253–259CrossRefGoogle Scholar
  51. Santangelo G Abbiati M, Giannini F, Cicogna F (1993) Red coral fishing trends in the western Mediterranean Sea during the period 1981–1991. Sci Mar 57:139–143Google Scholar
  52. Santangelo G, Carletti E, Maggi E, Bramanti L (2003) Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser 248:99–108CrossRefGoogle Scholar
  53. Santangelo G, Maggi E, Bramanti L, Bongiorni L (2004) Demography of the over-exploited Mediterranean red coral (Corallium rubrum L. 1758). Sci Mar 68(1):199–204Google Scholar
  54. Santangelo G, Bramanti L, Iannelli M (2007) Population dynamics and conservation biology of the over-exploited Mediterranean red coral. J Theor Biol 244:416–423PubMedCrossRefGoogle Scholar
  55. Santangelo G, Rossi S, Bramanti L, Gili JM, Tsounis G (2008) Conservation of long-lived, slow-growing precious species: the red coral population dynamics, a case study. Ecosystems (submitted)Google Scholar
  56. Sará M (1969) Research on coralligenous formation; problems and perspectives. Publ Staz Zool Napoli 37:124–134Google Scholar
  57. Stone RP (2006) Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions. Coral Reefs 25:229–238CrossRefGoogle Scholar
  58. Tescione G (1973) The Italians and their coral fishing. Fausto Fiorino, NaplesGoogle Scholar
  59. Thrush SF, Dayton PK (2003) Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu Rev Ecol Syst 33:449–473CrossRefGoogle Scholar
  60. Torrens O, Garrabou J, Marschal C, Harmelin JG (2005) Age and size at first reproduction in the commercially exploited red coral Corallium rubrum (L.) in the Marseilles area (France, NW Mediterranean). Biol Conser 121:391–397CrossRefGoogle Scholar
  61. True MA (1970) Étude quantitative de quatre peuplements sciaphiles sur substrat rocheus dans la région marseillaise. Bull Inst océanogr Monaco 69(1401):1–48Google Scholar
  62. Tsounis G, Rossi S, Gili JM, Arntz W (2006a) Population structure of an exploited benthic cnidarian: the red coral case study. Mar Biol 149:1059–1070CrossRefGoogle Scholar
  63. Tsounis G, Rossi S, Laudien J, Bramanti L, Fernández N, Gili JM, Arntz W (2006b) Diet and seasonal prey capture rate in the Mediterranean red coral (Corallium rubrum L.). Mar Biol 149:313–325CrossRefGoogle Scholar
  64. Tsounis G, Rossi S, Aranguren M, Gili JM, Arntz W. (2006c) Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar Biol 148:513–527CrossRefGoogle Scholar
  65. Tsounis G, Rossi S, Gili JM, Arntz W (2007) Red coral fishery at the Costa Brava (NW Mediterranean): case study for an over harvested precious coral. Ecosystems 10:975–986CrossRefGoogle Scholar
  66. Vighi M (1972) Étude sur la reproduction du Corallium rubrum (L.). Vie Milieu Vol XXIII fase 1, sér A. pp 21–32Google Scholar
  67. Virgilio M, Airoldi L, Abbiati M (2006) Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs 25:265–272CrossRefGoogle Scholar
  68. Weinbauer MG, Velimirov B (1995) Biomass and secondary production of the temperate gorgonian coral Eunicella cavolini (Coelenterata: Octocorallia). Mar Ecol Prog Ser 121:211–216CrossRefGoogle Scholar
  69. Weinberg S (1978) Mediterranean octocorallian communities and the abiotic environment. Mar Biol 49:41–57CrossRefGoogle Scholar
  70. West JM, Harvell CD, Walls AM (1993) Morphological plasticity in a gorgonian coral (Briareum asbestium) over a depth cline. Mar Ecol Prog Ser 94:61–69CrossRefGoogle Scholar
  71. Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. Sci Mar 53:3–17Google Scholar
  72. Zabala M, Mas G, Romero J, Ros JD, Linares C, Díaz D (2003) Estudi per a l’establiment de diverses capacitats de càrrega sobre el Patrimoni Natural Submergit del Parc Natural del Cap de Creus. Conveni Departament de MediAmbient i Fundació Bosch Gimpera, Universitat de Barcelona. 189 pp (In catalan)Google Scholar
  73. Zar JH (1996) Biostatistical analysis. Prentice-HallGoogle Scholar
  74. Zibrowius H, Montero M, Grashoff M (1984) La répartition du Corallium rubrum dans l´Atlantique. Thétis 11:163–170Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sergio Rossi
    • 1
    Email author
  • Georgios Tsounis
    • 2
  • Covadonga Orejas
    • 2
  • Tirma Padrón
    • 2
  • Josep-Maria Gili
    • 2
  • Lorenzo Bramanti
    • 3
  • Núria Teixidó
    • 4
  • Julian Gutt
    • 5
  1. 1.Institut de Ciència i Tecnologia Ambientals (Universitat Autònoma de Barcelona), Edifici Cn Campus UAB Cerdanyola del Vallés (Barcelona)Spain
  2. 2.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  3. 3.Department of Biology (Zoology)University of PisaPisaItaly
  4. 4.Centre d’Océanologie de Marseille, CNRS, UMR 6540 DIMAR, Station Marine d’EndoumeMarseilleFrance
  5. 5.Alfred Wegener Institut for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations