Marine Biology

, Volume 154, Issue 2, pp 335–343 | Cite as

Effect of food concentration and type of diet on Acartia survival and naupliar development

  • Stefanie M. H. IsmarEmail author
  • Thomas Hansen
  • Ulrich Sommer
Research Article


We have performed life table experiments to investigate the effects of different food types and concentrations on the larval development and survival up to adulthood of Acartia tonsa. The food species offered comprised a wide taxonomic spectrum: the pigmented flagellates Isochrysis galbana, Emiliania huxleyi, Rhodomonas sp., Prorocentrum minimum, the diatom Thalassiosira weissflogii, grown on medium offering enriched macronutrient concentrations and the ciliate Euplotes sp. initially cultured on Rhodomonas. For the ciliate species, also the functional response was studied. In order to avoid limitation by mineral nutrients, food algae have been taken from the exponential growth phase of the nutrient replete cultures. The suitability of Rhodomonas as a food source throughout the entire life cycle was not a surprise. However, in contrast to much of the recent literature about the inadequacy or even toxicity of diatoms, we found that also Thalassiosira could support Acartia-development through the entire life cycle. On the other hand, Acartia could not complete its life cycle when fed with the other food items, Prorocentrum having adverse effects even when mixed with Rhodomonas and Thalassiosira. Isochrysis well supported naupliar survival and development, but was insufficient to support further development until reproduction. With Emiliania and Euplotes, nauplii died off before most of them could reach the first copepodite stages. Acartia-nauplii showed a behavioral preference for Euplotes-feeding over diatom feeding, but nevertheless Euplotes was an insufficient diet to complete development beyond the naupliar stages.


Entire Life Cycle Isochrysis Food Alga Copepodite Stage Emiliania Huxleyi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Nicole Aberle-Malzahn for Acartia eggs, Andrea Saage for medium and for a stock culture of Euplotes, and Cordula Stielau for algal stock cultures. These experiments were carried out in the frame of the GLOBEC project.


  1. Carotenuto Y, Ianora A, Buttino I et al (2002) Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J Exp Mar Biol Ecol 276:49–66CrossRefGoogle Scholar
  2. Chaudron Y, Poulet SA, Laabir M et al (1996) Is hatching success of copepod eggs diatom density-dependent? Mar Ecol Prog Ser 144:185–193CrossRefGoogle Scholar
  3. Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar Biol 145:733–738Google Scholar
  4. Dam HG, Colin SP (2005) Prorocentrum minimum (clone Exuv) is nutritionally insufficient, but not toxic to the copepod Acartia tonsa. Harmful Algae 4:575–584CrossRefGoogle Scholar
  5. Durbin AG, Durbin EG, Wlodarczyk E (1990) Diel feeding behaviour in the marine copepod Acartia tonsa in relation to food availability. Mar Ecol Prog Ser 68:23–45CrossRefGoogle Scholar
  6. Fontana A, d’Ippolito G, Cutignano A et al (2007) LOX-Induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818CrossRefGoogle Scholar
  7. Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215CrossRefGoogle Scholar
  8. Houde SEL, Roman MR (1987) Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar Ecol Prog Ser 40:69–77CrossRefGoogle Scholar
  9. Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 125:279–286CrossRefGoogle Scholar
  10. Ianora A, Poulet SA, Miralto A (2003) The effects of diatoms on copepod reproduction. A review. Phycologia 42:351–363CrossRefGoogle Scholar
  11. Ianora A, Miralto A, Poulet SA et al (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407CrossRefGoogle Scholar
  12. Irigoien X, Head RN, Harris RP et al (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54CrossRefGoogle Scholar
  13. Irigoien X, Harris RP, Verheye HM et al (2002) Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419:387–389CrossRefGoogle Scholar
  14. Irigoien X, Titelman J, Harris RP et al (2003) Feeding of Calanus finmarchicus nauplii in the Irminger Sea. Mar Ecol Prog Ser 262:193–200CrossRefGoogle Scholar
  15. Jónasdottir SH, Kiørboe T (1996) Copepod recruitment and food composition: do diatoms affect hatching success? Mar Biol 125:743–750CrossRefGoogle Scholar
  16. Jones RH, Flynn KJ (2005) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459CrossRefGoogle Scholar
  17. Jones RH, Flynn KJ, Anderson TR (2002) Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Mar Ecol Prog Ser 235:147–156CrossRefGoogle Scholar
  18. Jonsson PR, Tiselius P (1990) Feeding-behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44CrossRefGoogle Scholar
  19. Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food-niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26(6):589–603CrossRefGoogle Scholar
  20. Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75CrossRefGoogle Scholar
  21. Klein Breteler WCM, Schogt N, Rampen S (2005) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser 219:125–130CrossRefGoogle Scholar
  22. Kleppel GS (1993) On the diet of calanoid copepods. Mar Ecol Prog Ser 99:183–195CrossRefGoogle Scholar
  23. Kleppel GS, Burkart CA (1995) Egg production and the nutritional environment of Acartia tonsa: the role of food quality in copepod nutrition. ICES J Mar Sci 52:297–304CrossRefGoogle Scholar
  24. Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microzooplankton: a question about the role of diatoms. Limnol Oceanogr 45:569–579Google Scholar
  25. Knuckey RM, Semmens GL, Mayer RJ et al (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351CrossRefGoogle Scholar
  26. Koski M, Klein Breteler WCM (2003) Influence of diet on copepod survival in the laboratory. Mar Ecol Prog Ser 264:73–82CrossRefGoogle Scholar
  27. Legendre L (1990) The significance of microalgal blooms for fisheries and export of particulate organic carbon in the oceans. J Plankton Res 12:681–699CrossRefGoogle Scholar
  28. Lonsdale DJ, Cosper EM, Kim WS, Doall M, Divadeenam A, Jonasdottir SH (1996) Food web interactions of Long Island bays, with preliminary observations on brown tide effects. Mar Ecol Prog Ser 134:247–263CrossRefGoogle Scholar
  29. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and of the protist plankton. Limnol Oceanogr 45:559–579CrossRefGoogle Scholar
  30. Meyer-Harms B, Irigoien X et al (1999) Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian Sea. Limnol Oceanogr 44:154–165CrossRefGoogle Scholar
  31. Miralto A, Barone G, Romano G et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176CrossRefGoogle Scholar
  32. Miralto A, Guglielmo L, Zagami G et al (2003) Inhibition of population growth in the copepods Acartia clausi and Calanus helgolandicus during diatom blooms. Mar Ecol Prog Ser 254:253–268CrossRefGoogle Scholar
  33. Møller EF, Nielsen TG (2001) Production of bacterial substrate by marine copepods: effect of phytoplantkon biomass and cell size. J Plankton Res 23:527–536CrossRefGoogle Scholar
  34. Paffenhöfer GA, Ianora A, Miralto A et al (2005) Colloquium on diatom–copepod interactions. Mar Ecol Prog Ser 286:293–305CrossRefGoogle Scholar
  35. Pierson JJ, Halsband-Lenk C, Leising AW (2005) Reproductive success of Calanus pacificus during diatom blooms in Dabob Bay, Washington. Prog Oceanogr 67:314–331CrossRefGoogle Scholar
  36. Poulet SA, Ianora A et al (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–96CrossRefGoogle Scholar
  37. Poulet SA, Wichard T, Ledoux JB et al (2006) Influence of diatoms on copepod reproduction. I. Field and laboratory observations related to Calanus helgolandicus egg production. Mar Ecol Prog Ser 308:129–142CrossRefGoogle Scholar
  38. Poulet SA, Escribano R, Hidalgo P et al (2007) Collapse of Calanus chilensis production in a marine environment with high diatom concentration. J Exp Mar Biol Ecol 352:187–199CrossRefGoogle Scholar
  39. Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  40. Rey C, Harris R, Irigoien X et al (2001) Influence of algal diet on growth and ingestion of Calanus helgolandicus nauplii. Mar Ecol Prog Ser 216:151–165CrossRefGoogle Scholar
  41. Saiz E, Kiørboe T (1995) Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar Ecol Prog Ser 122:147–158CrossRefGoogle Scholar
  42. Sommer U (1991a) The application of the droop-model of nutrient limitation to natural phytoplankton. Verh Int Verein Limnol 24:791–794Google Scholar
  43. Sommer U (1991b) A comparison of the Droop and the Monod models of nutrient limited growth applied to natural populations of phytoplankton. Funct Ecol 5:535–544CrossRefGoogle Scholar
  44. Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls in freshwater and marine phytoplankton. Oecologia 147:183–194CrossRefGoogle Scholar
  45. Sommer F, Stibor H, Sommer U, Velimirov B (2000) Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions. Mar Ecol Prog Ser 199:43–53CrossRefGoogle Scholar
  46. Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, PrincetonGoogle Scholar
  47. Stoecker DK, Egloff DA (1987) Predation by Acartia tonsa on planktonic ciliates and rotifers. J Exp Mar Biol Ecol 141:87–105Google Scholar
  48. Støttrup JG, Jensen J (1990) Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J Exp Mar Biol Ecol 141:87–103CrossRefGoogle Scholar
  49. Swadling KM, Marcus NH (1994) Selectivity in the natural diets of Acartia tonsa Dana (Copepoda: Calanoida): comparison of juveniles and adults. J Exp Mar Biol Ecol 181:91–103CrossRefGoogle Scholar
  50. Takahashi K, Tiselius P (2005) Ontogenetic change of foraging behaviour during copepodite development of Acartia clausii. Mar Ecol Prog Ser 303:213–223CrossRefGoogle Scholar
  51. Tokle NE (2006) Are the ubiquitous marine copepods limited by food or predation? Experimental and field-based studies with main focus on Calanus finmarchicus. Ph.D. thesis, NTNU, Trondheim, p 48Google Scholar
  52. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:263–272Google Scholar
  53. Villegas CT, Kanazawa A (1979) Relationship between diet composition and growth rate of the zoёal and mysis stages of Penaeus japonicus Bate. Fish Res J Philipp 4:32–40Google Scholar
  54. Von Stosch HA, Drebes G (1964) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen IV. Die Planktondiatomee Stephanopyxis turris – ihre Behandlung und Entwicklungsgeschichte. Helgol Wiss Meeresunters 11:209–257CrossRefGoogle Scholar
  55. Wichard T, Poulet SA, Halsband-Lenk C et al (2005) Survey of the chemical defence potential of diatoms: screening of fifty one species for α, β, γ, δ-unsaturated aldehydes. J Chem Ecol 31(4):949–958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Stefanie M. H. Ismar
    • 1
    • 2
    Email author
  • Thomas Hansen
    • 1
  • Ulrich Sommer
    • 1
  1. 1.Leibniz Institute for Marine Sciences (IFM-GEOMAR) at Kiel UniversityKielGermany
  2. 2.Ecology, Evolution and Behaviour, School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations