Advertisement

Marine Biology

, Volume 153, Issue 3, pp 473–482 | Cite as

Characterisation of cysteine proteinase activities in the digestive tract of juvenile Paragnathia formica isopods, ectoparasites of estuarine fish

  • Brigitte M. Manship
  • Anthony J. Walker
  • Lucy A. Jones
  • Angela J. Davies
Research Article

Abstract

Juveniles of Paragnathia formica Hesse (Isopoda; Gnathiidae) are haematophagous ectoparasites, feeding on fish blood which supplies the nutrients for their development through growth and moulting, and the subsequent survival and reproduction of the free-living adults. Little is known of the mechanisms of digestion in juvenile gnathiids, and biochemical studies on the digestive tract of these interesting estuarine isopods have not been undertaken previously. Here, functionally active cathepsin-like cysteine proteinases are identified in the digestive system of juvenile praniza (fed) and zuphea (unfed) forms. The physiological pH of the digestive tract and the optimum proteolytic activities detected in praniza 3 homogenates using the cathepsin B/L, cathepsin B, and cathepsin H fluorogenic substrates, N-Carbobenzoxy-Phe-Arg-4-methoxy-2-naphthylamine (Z-phe-arg-MNA), N-Carbobenzoxy-Arg-Arg-4-methoxy-2-naphthylamine (Z-arg-arg-MNA) and Arg-4-methoxy-2-naphthylamine (H-arg-MNA), respectively, are in the acidic range (pH 5.8–6.7). Inhibition profiles against Z-phe-arg-MNA and Z-arg-arg-MNA using the cathepsin B inactivator urea, and cysteine proteinase inhibitors, support the presence of cathepsin L- and B-like enzymes. These proteolytic activities are 10–50 times higher in homogenates of praniza 3 compared with zuphea 3 forms. Histochemistry of praniza 3 sections reveals that the predominant enzyme activity towards Z-phe-arg-MNA is limited to the digestive glands during early and mid stages of digestion; later, this activity appears in the lining of the anterior hindgut. Moreover, activity towards Z-arg-arg-MNA is generally restricted to the digestive glands, and only occasionally present in the anterior hindgut. In conclusion, the digestive glands are the main site of cathepsin-like cysteine proteinase activities in P. formica juveniles; these enzymes appear to be important to the digestion of host fish blood enabling development through to the free-living adult.

Keywords

Proteolytic Activity Cysteine Proteinase Digestive Gland Cysteine Proteinase Inhibitor Enzyme Histochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the Biomedical and Pharmaceutical Sciences Research Group (BPSRG) of Kingston University in providing a studentship to B. Manship. We are also grateful to Drs Mike Johnston and Nico Smit, and Ms. Polly Hayes for their help in collections on the Welsh saltmarshes, and we thank the Royal Society for the Protection of Birds, Ynyshir Nature Reserve, for allowing us access to the Dovey Estuary.

References

  1. Altman FP (1980) Tissue stabilizer methods in histochemistry. In: Evered D, O’Connor M (eds) Trends in enzyme histochemistry and cytochemistry, vol 73. CIBA Foundation Symposium, Excerpta Medica, Amsterdam, pp 81–102CrossRefGoogle Scholar
  2. Aoki H, Md Nazmul A, Watabe S (2003a) Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B 134:681–694CrossRefGoogle Scholar
  3. Aoki H, Md Nazmul A, Watabe S (2003b) Molecular cloning and functional characterization of crustapain: a distinct cysteine proteinase with unique substrate specificity from northern shrimp Pandalus borealis. J Biochem 133:799–810CrossRefGoogle Scholar
  4. Barrett AJ (2001) Proteolytic enzymes: nomenclature and classification. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes. a practical approach, 2nd edn. Oxford University Press, Oxford, pp 1–21Google Scholar
  5. Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) l-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201:189–198CrossRefGoogle Scholar
  6. Cowgill SE, Atkinson HJ (2003) A sequential approach to risk assessment of transgenic plants expressing protease inhibitors: effects on nontarget herbivorous insects. Transgenic Res 12:439–449CrossRefGoogle Scholar
  7. Davies AJ (1995) Studies on the gut flora of the haematophagous fish parasite Gnathia maxillaris Montagu. Bull Eur Assoc Fish Pathol 15:32–35Google Scholar
  8. Davies AJ, Smit NJ (2001) The life cycle of Haemogregarina bigemina (Adeleina: Haemogregarinidae) in South African hosts. Folia Parasitol 48:169–177CrossRefGoogle Scholar
  9. Davies AJ, Smit NJ, Hayes PM, Seddon AM, Wertheim D (2004) Haemogregarina bigemina (Protozoa: Apicomplexa: Adeleorina)-past, present and future. Folia Parasitol 51:99–108CrossRefGoogle Scholar
  10. Dolbeare FA, Smith RE (1977) Flow cytometric measurement of peptidases with use of 5-nitrosalicylaldehyde and 4-methoxy-beta-naphthylamine derivatives. Clin Chem 23:1485–1491PubMedGoogle Scholar
  11. Drinan EM, Rodger HD (1990) An occurrence of Gnathia sp., ectoparasitic isopods, on caged atlantic salmon. Bull Eur Ass Fish Pathol 10:41–142Google Scholar
  12. Fast MD, Ross NW, Craft CA, Locke SJ, MacKinnon SL, Johnson SC (2004) Lepeophtheirus salmonis: characterization of prostaglandin E2 in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Exp Parasitol 107:5–13CrossRefGoogle Scholar
  13. Grutter AS (1999) Cleaner fish really do clean. Nature 398:672–673CrossRefGoogle Scholar
  14. Grutter AS (2003) Feeding ecology of the ectoparasite Gnathia sp. (Crustacea: Isopoda) from the Great Barrier Reef, and its implications for fish cleaning behaviour. Mar Ecol Prog Ser 259:295–302CrossRefGoogle Scholar
  15. Jones CM, Nagel L, Hughes GL, Cribb TH, Grutter AS (2007) Host specificity of two species of Gnathia (Isopoda) determined by DNA sequencing blood meals. Int J Parasitol 37:927–935CrossRefGoogle Scholar
  16. Jones DA (1968) The functional morphology of the digestive system in the carnivorous intertidal isopod Eurydice. J Zool 156:363–376CrossRefGoogle Scholar
  17. Jones DA, Baddage PC, King PE (1969) Studies on the digestion and fine structure of digestive caecae in Eurydice pulchra (Crustacea: Isopoda). Mar Biol 2:311–320CrossRefGoogle Scholar
  18. Juilfs HB, Wägele JW (1987) Symbiontic bacteria in the gut of the blood-sucking Antarctic fish parasite Gnathia calva (Crustacea: Isopoda). Mar Biol 95:493–499CrossRefGoogle Scholar
  19. Kamboj RC, Pal S, Raghav N, Singh H (1993) A selective colorimetric assay for cathepsin L using Z-Phe-Arg-4-methoxy-β-naphthylamide. Biochimie 75:873–878CrossRefGoogle Scholar
  20. Kirschke H, Wikstrom P, Shaw E (1988) Active differences between cathepsins L and B: the S1 binding region. FEBS Lett 228:128–130CrossRefGoogle Scholar
  21. Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA (2004) Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol 13:569–579CrossRefGoogle Scholar
  22. Lilley CJ, Urwin PE, McPherson MJ, Atkinson HJ (1996) Characterization of intestinally active proteinases of cyst-nematodes. Parasitology 113:415–424CrossRefGoogle Scholar
  23. Lojda Z, Gossrau R, Stoward PJ (1991) Proteases. In: Pearse AG (ed) Histochemistry: theoretical and applied, vol 3. Churchill Livingston, London, pp 281–335Google Scholar
  24. Marino F, Giannetto S, Paradiso ML, Bottari T, Devico G, Macrí B (2004) Tissue damage and haematophagia due to praniza larvae (Isopoda: Gnathiidae) in some aquarium seawater teleosts. Dis Aquat Org 59:43–47CrossRefGoogle Scholar
  25. McKiernan JP, Grutter AS, Davies AJ (2004) Reproductive and feeding ecology of parasitic gnathiid isopods of epaulette sharks (Hemiscyllium ocellatum) with consideration of their role in the transmission of a haemogregarine. Int J Parasitol 35:19–27CrossRefGoogle Scholar
  26. Mendiola J, Alonso M, Marquetti MC, Finlay C (1996) Boophilus microplus: multiple proteolytic activities in the midgut. Exp Parasitol 82:27–33CrossRefGoogle Scholar
  27. Monod T (1926) Les Gnathiidae. Essai monographique (Morphologie, Biologie, Systematique). Mem Soc Sci Nat Maroc 13:1–668Google Scholar
  28. Mouchet S (1928) Contribution a l’étude de la digestion chez les Gnathiidae. Bull Soc Zool Fr 53:442–452Google Scholar
  29. Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, Hatayama K, Towatari T, Nikawa T, Katunuma N (1991) Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett 280:307–310CrossRefGoogle Scholar
  30. Nisbet AJ, Billingsley PF (2000) A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. Int J Parasitol 30:19–27CrossRefGoogle Scholar
  31. Okuda K, Caroci A, Ribolla PEM, Marinotti O, de Bianchi AG, Bijovsky AT (2005) Morphological and enzymatic analysis of the midgut of Anopheles darlingi during blood digestion. J Insect Physiol 51:769–776CrossRefGoogle Scholar
  32. Paperna I, Por FD (1977) Preliminary data on the Gnathiidae (Isopoda) of the Northern Red Sea, the Bitter Lakes and Eastern Mediterranean and the biology of Gnathia piscivora. Rapp Comm Int Mer Medit 24:195–197Google Scholar
  33. Perkins PS, Haley D, Rosenblatt R (1997) Proteolytic enzymes in the blood-feeding parasitic copepod, Phrixocephalus cincinnatus. J Parasitol 83:6–12CrossRefGoogle Scholar
  34. Ravanko K, Jarvinen K, Helin J, Kalkkinen N, Holtta E (2004) Cysteine cathepsins are central contributors of invasion by cultured adenosylmethionine decarboxylase-transformed rodent fibroblasts. Cancer Res 64:8831–8838CrossRefGoogle Scholar
  35. Romestrand B, Trilles JP (1976) Production d’une substance anticoagulante par les glandes exocrines céphalothoraciques des Isopodes Cymothoidae Meinertia oestroides (Risso, 1826) et Anilocra physodes (L., 1758) (Isopoda, Flabellifera, Cymothoidae). C R Hebd Séances Acad Sci 282:663–665Google Scholar
  36. Sajid M, Mckerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21CrossRefGoogle Scholar
  37. Sevilla C, Lagarrigue JG (1975) Physiologie des invertébrés. Etude comparée des zymogrammes du tube digestif chez les Isopodes (Crustacés, Péracarides). C R Hebd Séances Acad Sci 281:715–718Google Scholar
  38. Shiba H, Uchida D, Kobayashi H, Natori M (2001) Involvement of cathepsin B- and L-like proteinases in silk gland histolysis during metamorphosis of Bombix mori. Arch Biochem Biophys 390:28–34CrossRefGoogle Scholar
  39. Smit NJ, Davies AJ (2004) The curious life-style of the parasitic stages of gnathiid isopods. Adv Parasitol 58:289–392CrossRefGoogle Scholar
  40. Smit NJ, Grutter AS, Adlard RD, Davies AJ (2006) Hematozoa of teleosts from Lizard Island, Australia, with some comments on their possible mode of transmission and the description of a new hemogregarine species. J Parasitol 92:778–788CrossRefGoogle Scholar
  41. Stoll C (1962) Cycle évolutif de Paragnathia formica (Hesse) (Isopoda: Gnathiidae). Cah Biol Mar 3:401–416Google Scholar
  42. Tinsley MC, Reilly S (2002) Reproductive ecology of the saltmarsh-dwelling marine ectoparasite Paragnathia formica (Crustacea, Isopoda). J Mar Biolog Assoc UK 82:79–84Google Scholar
  43. Van Noorden CJF, Smith RE, Rasnick D (1988) Cysteine proteinase activity in arthritic rat knee joints and the effects of a selective systemic inhibitor, Z-Phe-AlaCH2F. J Rheumatol 15:1525–1535PubMedGoogle Scholar
  44. Wägele JW (1992) Isopoda. In: Harrison FW, Humes AG (eds), Microscopic anatomy of invertebrates, vol 9, Crustacea. Wiley-Liss, New York, pp 529–618Google Scholar
  45. Walker AJ, Ford L, Majerus MEN, Geoghegan IE, Birch N, Gatehouse JA, Gatehouse AMR (1998a) Characterisation of the mid-gut digestive proteinase activity of the two-spot ladybird (Adalia bipunctata L.) and its sensitivity to proteinase inhibitors. Insect Biochem Mol Biol 28:173–180CrossRefGoogle Scholar
  46. Walker AJ, Glen DM, Shewry PR (1998b) Purification and characterisation of a digestive cysteine proteinase from the field slug (Deroceras reticulatum) a potential target for slug control. J Agric Food Chem 46:2873–2881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Brigitte M. Manship
    • 1
  • Anthony J. Walker
    • 1
  • Lucy A. Jones
    • 1
  • Angela J. Davies
    • 1
  1. 1.School of Life SciencesKingston UniversityKingston upon ThamesUK

Personalised recommendations