Advertisement

Marine Biology

, Volume 152, Issue 4, pp 855–862 | Cite as

Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection

  • Jelena Cvejic
  • Sylvie Tambutté
  • Severine Lotto
  • Momir Mikov
  • Ivan Slacanin
  • Denis Allemand
Research Article

Abstract

Corallium rubrum is the most famous and precious coral due to the intense characteristic red colour of its skeleton. We have determined the presence of carotenoids in natural samples of C. rubrum from Marseille, Riou, and investigated their chemical composition. Analysis was performed both on soft tissues and hard tissues including spicules and skeleton. Since hard tissues are made of a mineral fraction and an organic fraction obtained after demineralization, extraction was performed both with and without demineralization by EDTA. The extracts were analyzed by complementary methods of TLC, HPLC/DAD and HPLC/MS. The components were separated by RP-18 chromatography column using acetonitrile/methanol for HPLC/DAD and acetonitrile/water gradient for HPLC/MS analysis. Our results give the first evidence of the presence of canthaxanthin, 4,4′-diketo-β-carotene, as the major carotenoid in all samples. Spicules exhibited higher content in carotenoids than skeleton. Demineralization treatment improved the efficiency of carotenoid extraction by an average factor of 5 and showed that organic matrix contains canthaxanthin.

Keywords

Carotenoid Astaxanthin Hard Tissue Organic Matrix Axial Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dominique Prudon, Catherine Balme and DIMAR for providing coral samples. We are grateful to Dominique Desgré for coral maintenance. We thank Christine Ferrier-Pagès, Natacha Caminiti, Eric Tambutté, Aurélie Moya and Didier Zoccola for fruitful discussions. This study was conducted as part of the Centre Scientifique de Monaco research program, funded by the Government of the Principality of Monaco and by the Company Van Cleef and Arpels. The Company Van Cleef and Arpels supports the research on red coral through an agreement established with the Centre Scientifique de Monaco.

References

  1. Allemand D, Grillo M-C (1992) Biocalcification mechanisms in gorgonians. 45Ca uptake and deposition by the mediterranean red coral Corallium rubrum. J Exp Zool 292:237–246CrossRefGoogle Scholar
  2. Allemand D, Bénazet-Tambutté S (1996) Dynamics of calcification in the Mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278CrossRefGoogle Scholar
  3. Allemand D, Cuif J-P, Watabe N, Oishi M, Kawaguchi T (1994) The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. In: Biomineralization 93–7th International Symposium on Biomineralization. Bulletin de l’Institut Océanographique, Monaco, pp 129–139Google Scholar
  4. Beliaeff B, Gros P, Belin C, Raffin B, Gailhard I, Durbec JP (2001) Phytoplankton events in French coastal waters during 1987–1997. Oceanol Acta 24:425–433CrossRefGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefGoogle Scholar
  6. Bramanti L, Magagnini G, De Maio L, Santangelo G (2005) Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a 4-year study. J Exp Mar Biol Ecol 314:69–78CrossRefGoogle Scholar
  7. Brown BE, Dunne RP, Ambarsari I, Le Tissier MDA, Satapoomin U (1999) Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar Ecol Prog Ser 191:53–69CrossRefGoogle Scholar
  8. Cattaneo-Vietti R, Cicogna F (1993) Il corallo rosso: una risorsa mediterranea. In: Cigogna F, Cattaneo-Vietti R (eds) ll corallo rosso in Mediterraneo: arte, storia e scienza. Ministero delle Risorse agricole, alimentari e forestali, Massa Lubrense, Italy, pp 3–9Google Scholar
  9. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345CrossRefGoogle Scholar
  10. Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258CrossRefGoogle Scholar
  11. Dauphin Y (2006) Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea). Comp Biochem Physiol A 145(1):54–64CrossRefGoogle Scholar
  12. Dembinska-Kiec A (2005) Carotenoids: risk or benefit for health. Biochim Biophys Acta 1740:93–94CrossRefGoogle Scholar
  13. Fox D (1972) Pigmented calcareous skeletons of some corals. Comp Biochem Physiol B 43:919–927CrossRefGoogle Scholar
  14. Gailhard I (2003) Analyse de la variabilité spatio-temporelle des populations microalgales côtières observées par le “réseau de surveillance du phytoplancton et des phycotoxines” (REPHY). PhD Sciences de l’environnement marin, Aix-Marseille II, 187 pGoogle Scholar
  15. Goldberg WM (1988) Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Relationship to alcian blue staining and calcium binding. Histochem 69:163–170CrossRefGoogle Scholar
  16. Grigg RW (1993) Future prospects for coral reef science and species beyond the reef. Coral Reefs 12:55–56CrossRefGoogle Scholar
  17. Grillo M-C, Goldberg WM, Allemand D (1993) Skeleton and sclerite formation in the precious red coral Corallium rubrum. Mar Biol 117:119–128CrossRefGoogle Scholar
  18. Harmelin J-G (2000) Le Corail Rouge de Méditerranée : quelques aspects de sa biologie et de son écologie. In: Morel J-P, Rondi-Costanzo C, Ugolini D (eds) Corallo di Ieri, Corallo di Oggi. Edipuglia, Bari, pp 11–20Google Scholar
  19. Jeffrey S, Wright S, Zapata M (1999) Recent advances in HPLC pigment analysis of phytoplankton. Mar Freshw Res 50:879–896CrossRefGoogle Scholar
  20. Kingsley RJ, Watabe N (1983) Analysis of proteinaceous components of the organic matrices of spicules from the gorgonian Leptogorgia virgulata. Comp Biochem Physiol B 76:443–447CrossRefGoogle Scholar
  21. Kingsley RJ, Watabe N (1984) Synthesis and transport of the organic matrix of the spicules in the gorgonian Leptogorgia virgulata Lam. (coelenterata: gorgonacea). An autoradiographic investigation. Cell Tissue Res 235:533–538CrossRefGoogle Scholar
  22. Lacaze-Duthiers H (1864) Histoire naturelle du corail. J.B. Bailière et Fils, Paris, 371 pGoogle Scholar
  23. Liverino B (1989) The world of coral. From mythology to classification in the animal kingdom. In: Red Coral jewel of the sea. Analisi, Bologna, pp 9–22Google Scholar
  24. Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new age determination method for the precious red coral Corallium rubrum (L.) (Gorgonacea: Octocorallia). Coral Reefs 23:423–432CrossRefGoogle Scholar
  25. Mateu G, Traveria A, Fontarnau R, Masso C (1986) Biodiagénesis mineralògica del Corallium rubrum (L). Bol Inst Esp Oceanogr 3:1–12Google Scholar
  26. Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67:771–783CrossRefGoogle Scholar
  27. McGraw KJ (2006) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242Google Scholar
  28. Merlin J (1985) Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem 57:785–792CrossRefGoogle Scholar
  29. Merlin JC, Delé ML (1983) Etude par spectroscopie Raman de résonance de la pigmentation des squelettes calcaires de certains coraux. Bull Soc Zool France 108:289–301Google Scholar
  30. Merlin JC, Delé-Dubois ML (1986) Resonance Raman characterization of polyacetylenic pigments in the calcareous skeleton. Comp Biochem Physiol B 84:97–103CrossRefGoogle Scholar
  31. Mobley KB, Gleason DF (2003) The effect of light and heterotrophy on carotenoid concentrations in the Caribbean anemone Aiptasia pallida (Verrill). Mar Biol 143:629–637CrossRefGoogle Scholar
  32. Nelis HJCF, Lavens P, Moens L, Sorgeloos P, Jonckheere JA, Criel GR, De Leenheer AP (1984) cis-canthaxanthins. Unusual carotenoids in the eggs and the reproductive system of female brine shrimp Artemia. J Biol Chem 259:6063–6066PubMedGoogle Scholar
  33. Nelis HJCF, Lavens P, Van Steenberge MMZ, Sorgeloos P, Criel GR, De Leenheer AP (1988) Qualitative and quantitative changes in the carotenoids during development of the brine shrimp Artemia. J Lipid Res 29:491–499PubMedGoogle Scholar
  34. Picciano ML, Ferrier-Pagès C (2007) Ingestion of pico- and nanoplankton by the Mediterranean red coral Corallium rubrum. Mar Biol 150:773–782CrossRefGoogle Scholar
  35. Ranson G, Durivault A (1937) Le pigment d’Heliopora coerulea et de quelques autres alcyonnaires. C R Soc Biol Paris 126:1149–1151Google Scholar
  36. Santangelo G, Bongiorni L, Giannini F, Abbiati M, Buffoni G (1997) Structure analysis of two red coral populations dwelling in different habitats. In: Cigogna F. BG, Cattaneo-Vietti R. (eds) Red coral and other Mediterranean octocorals: biology and protection, pp 23–43Google Scholar
  37. Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107CrossRefGoogle Scholar
  38. Tsounis G, Rossi S, Laudien J, Bramanti L, Fernandez N, Gili J-M, Arntz W (2006) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Mar Biol 149:313–125CrossRefGoogle Scholar
  39. Urmos J, Sharma SK, Mackenzie FT (1991) Characterization of some biogenic carbonates with Raman spectroscopy. Am Mineralogist 76:641–646Google Scholar
  40. Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chrom 910:31–49CrossRefGoogle Scholar
  41. von Linting J, Hessel S, Isken A, Kiefer C, Lampert JM, Voolstra O, Vogt K (2005) Towards a better understanding of carotenoid metabolism in animals. Biochim Biophys Acta 1740:122–131CrossRefGoogle Scholar
  42. Weinberg S (1978) Mediterranean octocorallian communities and the abiotic environment. Mar Biol 49:41–57CrossRefGoogle Scholar
  43. Zibrowius H, Monteiro Marques V, Grasshoff M (1984) La répartition du Corallium rubrum dans l’Atlantique (Cnidaria: Anthozoa: Gorgonaria). Tethys 11:163–170Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jelena Cvejic
    • 1
  • Sylvie Tambutté
    • 2
  • Severine Lotto
    • 2
  • Momir Mikov
    • 3
  • Ivan Slacanin
    • 4
  • Denis Allemand
    • 2
  1. 1.Faculty of Medicine, Department of PharmacyLaboratory for Pharmaceutical and Natural Products AnalysisNovi SadSerbia
  2. 2.Centre Scientifique de MonacoMonacoMonaco
  3. 3.School of PharmacyUniversity of OtagoDunedinNew Zealand
  4. 4.ILISBienneSwitzerland

Personalised recommendations