Advertisement

Marine Biology

, Volume 152, Issue 4, pp 803–814 | Cite as

Effects of water viscosity upon ventilation and metabolism of a flatfish, the common sole Solea solea (L.)

  • Christine S. Couturier
  • Alice Rouault
  • David McKenzie
  • Robert Galois
  • Serge Robert
  • Lucette Joassard
  • Guy Claireaux
Research Article

Abstract

The French Atlantic coast contains large highly productive intertidal mudflats that are colonised by juveniles of numerous flatfish species, including the common sole (Solea solea, L.). These ecosystems are also heavily exploited by the shellfish farming industry. Intensive bivalve culture is associated with substantial biodeposition (1–6 t-dw ha−1 day−1), which directly or indirectly contributes to increase exopolysaccharide (EPS) concentrations at the interface between water column and seabed. EPS are long-chain molecules organised into colloids, which influence rheological properties of water, particularly viscosity. Increased water viscosity had consequences for ventilatory activity of juvenile flatfish, whereby the minimal pressure required to ventilate the medium increases directly with EPS concentration. Moreover, the critical EPS concentration ([EPS]crit) at which water was no longer able to flow through the branchial basket ranged from almost nil to over 30 mg l−1, depending on species and size. [EPS]crit was lower in small individuals and individuals from species with high metabolic rates (turbot and plaice). These differences may depend upon gill and bucco-branchial cavity morphometrics. The ventilatory workload of sole increased with viscosity to a maximum at 2 mg EPS l−1. Viscosity might, therefore, be a limiting factor for flatfish post larvae, which colonise the intertidal mudflats, depending upon their size and species. EPS concentrations in the field can reach 15 mg l−1. A selective effect is conceivable but remains to be estimated in the field.

Keywords

Extracellular Polymeric Substance mgO2 Standard Metabolic Rate Intertidal Mudflat Routine Metabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

\( {\text{\ifmmode\expandafter\dot\else\expandafter\.\fi{M}O}}_{2} \)

Oxygen consumption in mgO2 per unit of time (h−1) and unit of mass (kg−1)

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{\gamma } \)

Shear rate

%

Per cent

°C

Celsius degree

cm

Centimetre

d

Day

dw

Dry weight

e

Exponential

g

Gram

H

Difference in water height

H0

Initial difference in water height

ha

Hectare

Hz

Hertz

km2

Square kilometre

l

Litre

L.

Linnaeus

ml

Millilitre

mm

Millimetre

Pa

Pascal

T

Time

t

Tonnes

y, k

Parameters to estimate, k is the radius of curvature, y the asymptote value, i.e. yield stress

ΔP

Difference in pressure

μm

Micron

Notes

Acknowledgements

Authors would like to thank Y. Desaunay, J. Grison, G. Guillou and M. Bréret for their technical assistance, C.S.C. was the recipient of a Ph.D. fellowship from the Conseil Général de Charente Maritime. The financial support by the European Union, Directorate Fisheries, through contract QLRS-2002-00799, Project ETHOFISH, is also acknowledged.

References

  1. Altamiras J, Axelsson M, Claireaux G, Lefrançois C, Mercier C, Farrell AP (2002) Cardiorespiratory status of triploid brown trout during swimming at two acclimation temperatures. J Fish Biol 60:102–116CrossRefGoogle Scholar
  2. Barillé L, Cognie B (2000) Revival capacity of diatoms in bivalve pseudofaeces and faeces. Diatom Res 15:11–17CrossRefGoogle Scholar
  3. Blair SGW (1933) On the nature of “Yield-Value”. J Appl Phys 4:113–118Google Scholar
  4. Bougrier S, Geairon P, Deslou-Paoli JM, Bacher C, Jonquières G (1995) Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture 134:143–154CrossRefGoogle Scholar
  5. Carlson DJ (1987) Viscosity of sea-surface slicks. Nature 329:823–825CrossRefGoogle Scholar
  6. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153Google Scholar
  7. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. Fonds M, Cronie R, VA D, Van der Puyl P (1992) Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth J Sea Res 29:127–143CrossRefGoogle Scholar
  9. Fuiman LA, Batty RS (1997) What a drag it is getting cold: partitioning the physical and physiological effects of temperature on fish swimming. J Exp Biol 200:1745–1755PubMedGoogle Scholar
  10. Gershakov SM, Hatcher PG (1972) Improved technique for analysis of carbohydrates in sediments. Limnol Oceanogr 17:938–943CrossRefGoogle Scholar
  11. Gibson RN (1997) Behaviour and the distribution of flatfishes. J Sea Res 37:241–256CrossRefGoogle Scholar
  12. Goulletquer P, Le Moine O (2002) Shellfish farming and coastal zone management (CZM) development in the Marennes-Oleron bay and charentais sounds (Charente Maritime, France): a review of recent developments. Aquaculture Int 10:507–525CrossRefGoogle Scholar
  13. Guarini J-M, Blanchard G, Bacher C, Gros P, Riera P, Richard P, Gouleau D, Galois R, Prou J, Sauriau P-G (1998) Dynamics of spatial patterns of microphytobenthic biomass: interferences from geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 166:131–141CrossRefGoogle Scholar
  14. Hartstein ND, Rowden AA (2004) Effect of biodeposits from mussel culture on macroinvertebrate assemblages at sites of different hydrodynamic regime. Mar Environ Res 57:339–357CrossRefGoogle Scholar
  15. Hughes GM (1960) A comparative study of gill ventilation in marine teleosts. J Exp Biol 37:28–45Google Scholar
  16. Hughes GM (1966) The dimensions of fish gills in relation to their function. J Exp Biol 45:177–195PubMedGoogle Scholar
  17. Hughes GM (1972) Morphometrics of fish gills. Respir Physiol 14:1–25CrossRefGoogle Scholar
  18. Hughes GM (1984) General anatomy of the gills. In: Hoar WS, Randall DJ (eds) Fish physiology. X, Gills—Part A, Anatomy, gas transfert and acid-base regulation. Academic, New York, pp 1–72Google Scholar
  19. Hughes GM, Shelton G (1958) The mechanism of gill ventilation in three freshwater teleosts. J Exp Biol 35:807–823Google Scholar
  20. Jenkinson I, Arzul G (1998) Effect of the flagellates Gymnodinium mikimotoi, Heterosigma akashiwo and Pavlova lutheri on flow through fish gills. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Proceedings of the 8th international conference on Harmful Algae. Xunta de Galicia, Pontevedro and Intergovernmental Oeanographic Commission of Unesco, Vigo, Spain, pp 425–428Google Scholar
  21. Jenkinson I, Biddanda B (1995) Bulk-phase viscoelastic properties of seawater: relationship with plankton components. J Plankton Res 17:2251–2274CrossRefGoogle Scholar
  22. Jenkinson I, Claireaux G, Gentien P (2007) Biorheological properties of intertidal organic fluff on mud flats and its modification of gill ventilation in buried sole Solea solea. Mar Biol 150:471–485CrossRefGoogle Scholar
  23. Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin JC, Jensen FB (eds) Fish ecophysiology, vol 9. Chapman & Hall, London, UK, pp 161–179CrossRefGoogle Scholar
  24. Kalinin AL, Severi W, Guerra CDR, Costa MJ, Rantin FT (2000) Ventilatory flow relative to intrabuccal and intraopercular volumes in the Serrasalmid fish Piaractus mesopotamicus during normoxia and exposed to graded hypoxia. Rev Bras Biol 60:249–254CrossRefGoogle Scholar
  25. Le Hir P, Robert S, Chaumillon E, Walker P (2005) Etude pour la gestion dynamique des sédiments sur les côtes du bassin de Marennes-Oléron et le pertuis de Maumusson. Lot 4: mesures et analyses—Conchyliculture/envasements/sables. IFREMER—CREOCEAN—CLDG, La RochelleGoogle Scholar
  26. Lefrançois C, Claireaux G (2003) Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Mar Ecol Prog Ser 259:273–284CrossRefGoogle Scholar
  27. Leguerrier D, Niquil N, Boileau N, Rzeznik J, Sauriau P-G, Le Moine O, Bacher C (2003) Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar Ecol Prog Ser 273:147–162CrossRefGoogle Scholar
  28. MacCormack TJ, McKinley RS, Roubach R, Almeida-Val VMF, Val AL, Driedzic WR (2003) Changes in ventilation, metabolism, and behaviour, but not bradycardia, contribute to hypoxia survival in two species of Amazonian armoured catfish. Can J Fish Aqua Sci 81:272–280Google Scholar
  29. Mallekh R, Lagardère J-P (2002) Effect of temperature and dissolved oxygen concentration on the metabolic rate of turbot and the relationship between metabolic scope and feeding demand. J Fish Biol 60:1105–1115CrossRefGoogle Scholar
  30. Massel SR (1999) Fluid mechanics for marine ecologists. Springer, BerlinCrossRefGoogle Scholar
  31. Maxime V, Pichavant K, Boeuf G, Nonnotte G (2000) Effects of hypoxia on respiratory physiology of turbot, Scophthalmus maximus. Fish Physiol Biochem 21:51–59CrossRefGoogle Scholar
  32. Osse JWM, Van den Boogaart JGM (1999) Dynamic morphology of fish larvae, structural implications of friction forces in swimming, feeding and ventilation. J Sea Res 55:156–174Google Scholar
  33. Parker JG (1983) A comparison of methods used for the measurement of organic matter in marine sediment. Chem Ecol 1:201–210CrossRefGoogle Scholar
  34. Petersen JK, Bougrier S, Smaal AC, Garen P, Robert S, Larsen JEN, Brummelhuis E (2004) Intercalibration of mussel Mytilus edulis clearance rate measurements. Mar Ecol Prog Ser 267:187–194CrossRefGoogle Scholar
  35. Preide IG, Holliday FGT (1980) The use of new tilting tunnel respirometer to investigate some aspects of metabolism and swimming activity of the plaice (Pleuronectes platessa L.). J Exp Biol 85:295–309Google Scholar
  36. Ragnarsson SA, Raffaelli D (1999) Effects of the mussel Mytilus edulis L. on the invertebrate fauna of sediments. J Exp Mar Biol Ecol 241:31–43CrossRefGoogle Scholar
  37. Roberts JL (1975) Active branchial and ram gill ventilation in fishes. Biol Bull US 148:85–105CrossRefGoogle Scholar
  38. Schmidt-Nielsen K (1998) Physiologie animale—Adaptation et milieux de vie. Dunod, Paris, FranceGoogle Scholar
  39. Schlichting H (1987) Boundary-layer theory. McGraw-Hill, New YorkGoogle Scholar
  40. Shingles A, McKenzie DJ, Claireaux G, Domenici P (2005) Reflex cardioventilatory responses to hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceived threat of predation and water turbidity. Physiol Biochem Zool 78:744–755CrossRefGoogle Scholar
  41. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New YorkGoogle Scholar
  42. Sornin J-M (1983) Effet des biodépôts de l’hûitre Crassostrea gigas (Thunberg) sur l’accumulation de matières organiques dans les parcs du bassin de Marennes-Oléron. J Molluscan Stud 12A:185–197Google Scholar
  43. Sornin J-M, Feuillet M, Héral M, Fardeau J-C (1986) Influence des cultures d’huîtres Crassostrea gigas sur le cycle du phosphore en zone intertidale: rôle de la biodéposition. Oceanol Acta 9:313–322Google Scholar
  44. Underwood GJC (1994) Seasonnal and spatial variation in epipelic diatom assemblages in the Severn estuary. Diatom Res 9:451–472CrossRefGoogle Scholar
  45. Underwood GJC, Paterson DM (1993) Seasonnal changes in diatom biomass, sediment stability and biogenic stabilisation in the Severn estuary. J Mar Biol Assoc UK 73:871–887CrossRefGoogle Scholar
  46. Verger F (1968) Marais et wadden du littoral français. Etude de géomorphologie. Thèse de Doctorat, Biscaye Frères imprimeursGoogle Scholar
  47. Vouvé F (2000) Régénération benthique dans les vasières intertidales de Marennes-Oléron: nature de la matière organique, son impact sur la production et l’incorporation de l’ammonium. Doctorat, Océanologie, PerpignanGoogle Scholar
  48. Webb PW (1988) Simple physical principles and vertebrate aquatic locomotion. Am Zool 28:709–725CrossRefGoogle Scholar
  49. Wilson RS, Kuchel LJ, Franklin CE, Davison W (2002) Turning up the heat on subzero fish: thermal dependence of sustained swimming in an Antarctic notothenioid. J Therm Biol 27:381–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christine S. Couturier
    • 1
  • Alice Rouault
    • 1
  • David McKenzie
    • 2
  • Robert Galois
    • 1
  • Serge Robert
    • 1
  • Lucette Joassard
    • 1
  • Guy Claireaux
    • 2
  1. 1.CRELA (CNRS-IFREMER-Univ. La Rochelle)L’HoumeauFrance
  2. 2.ISEM (CNRS-Univ. Montpellier II), Station Méditerranéenne de l’Environnement LittoralSeteFrance

Personalised recommendations