Advertisement

Marine Biology

, Volume 151, Issue 5, pp 1633–1645 | Cite as

Modulation of branchial ion transport protein expression by salinity in glass eels (Anguilla anguilla L.)

  • Jonathan Mark Wilson
  • Alexandre Leitão
  • Ana Filipa Gonçalves
  • Catarina Ferreira
  • Patrick Reis-Santos
  • Ana-Violeta Fonseca
  • Joana Moreira da Silva
  • José Carlos Antunes
  • Cristina Pereira-Wilson
  • João Coimbra
Research Article

Abstract

The Anguillid juvenile glass eel must deal with the osmoregulatory consequences of highly variable environmental salinities on its recruitment migration from coastal to fresh waters. Changes in ionoregulatory parameters and branchial ion transport protein [Na+/K+-ATPase, Na+:K+:2Cl cotransporter (NKCC), cystic fibrosis transmembrane regulator (CFTR) anion channel, V-type proton ATPase] expression (activities, protein and/or mRNA level expression and/or cellular localization) in response to acclimation to a broad range of ionic strengths [distilled water (DW) to hypersaline water (HSW; 150%) sea water (SW 32‰)] was studied. The estuarine glass eels were very euryhaline and successfully acclimated to acute changes in environmental ionic strength from 50% SW, with high mortality only observed in HSW (51%) and sublethal osmoregulatory indicators (whole body water content and sodium levels) disturbed at the extremes (DW and HSW). Central to a high salinity acclimation were elevated branchial Na+/K+-ATPase, NKCC and CFTR expression. At lower salinity, Na+/K+-ATPase expression was maintained and NKCC and CFTR expressions were reduced. Branchial chloride cells increased in size up to SW but decreased in HSW. During hypotonic disturbance (DW), no compensatory elevation in V-ATPase or Na+/K+-ATPase expression was observed.

Keywords

Chloride Cell Cystic Fibrosis Transmembrane Regulator Acclimation Group ATPase Expression Branchial Basket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a Foundation for Science and Technology (FCT) PRAXIS XXI grant (POCTI/34164/1999). JMW was also supported by PDF grants from FCT and NSERC-Canada. We would like to thank Drs M.A. Reis Henriques, and L. Guilhermino (CIIMAR) for use of equipment and lab space and our fisherman Eduardo Martins.

References

  1. Birrell L, Cramb G, Hazon N (2000) Osmoregulation during the development of glass eels and elvers. J Fish Biol 56:1450–1459CrossRefGoogle Scholar
  2. Choe KP, Kato A, Hirose S, Plata C, Sindié A, Romero MF, Claiborne JB, Evans DH (2005) NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol 289:R1520–R1534Google Scholar
  3. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRefGoogle Scholar
  4. Ciccotti E, Macchi E, Rossi A, Cataldi E, Cataudella S (1993) Glass eel (Anguilla anguilla) acclimation to freshwater and seawater: morphological changes of the digestive tract. J Appl Icthyol 9:74–81CrossRefGoogle Scholar
  5. Crean SR, Dick JTA, Evans DW, Rosell RS, Elwood RW (2005) Survival of juvenile European eels (Anguilla anguilla ), transferred among salinities, and developmental shifts in their salinity preference. J Zool 266:11–14CrossRefGoogle Scholar
  6. Cutler CP, Sanders IL, Hazon N, Cramb G (1995) Primary sequence, tissue specificity and mRNA expression of the Na+,K+-ATPase α1 subunit in the European eel (Anguilla anguilla). Comp Biochem Physiol 111B:567–573CrossRefGoogle Scholar
  7. Cutler CP, Cramb G (2001) Molecular physiology of osmoregulation in eels and other teleosts: the role of transporter isoforms and gene duplication. Comp Biochem Physiol 130A:551–564CrossRefGoogle Scholar
  8. D’Cotta H, Valotaire C, Le Gac F, Prunet P (2000) Synthesis of gill Na+-K+-ATPase in atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am J Physiol 278:R101–R110Google Scholar
  9. Edeline E, Dufour S, Elie P (2005) Role of glass eel salinity preference in the control of habitat selection and growth plasticity in Anguilla anguilla. Mar Ecol Prog Ser 304:191–199CrossRefGoogle Scholar
  10. Edwards SL, Wall BP, Morrison-Shetlar AI, Sligh S, Weakly J, Claiborne JB (2005) The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus). J Exp Zool 303A:464–475CrossRefGoogle Scholar
  11. Elie P, Lecomte-Finiger R, Cantrelle I, Charlon N (1979) Définition des limites des différents stades pirmentaires durant la phase civelle d'Anguilla anguilla (L.). Vie Milieu 32:149–157Google Scholar
  12. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of ntirogenous waste. Physiol Rev 85:97–177CrossRefGoogle Scholar
  13. Forrest JN Jr, Cohen AD, Schon DA, Epstein FH (1973) Na transport and Na-K-ATPase in gills during adaption to seawater: effects of cortisol. Am J Physiol 224:709–713PubMedGoogle Scholar
  14. Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005) Functional classification of mitochondria-rich cells in eurhyaline mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/Cl cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036CrossRefGoogle Scholar
  15. Hwang PP, Fang MJ, Tsai JC, Huang CJ, Chen ST (1998) Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus). Fish Physiol Biochem 18:363–373CrossRefGoogle Scholar
  16. Kelly SP, Chow INK, Woo NYS (1999) Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J Exp Zool 283:226–241CrossRefGoogle Scholar
  17. Krogh A (1937) Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z Vergl Physiol 24:653–666CrossRefGoogle Scholar
  18. Lasserre P (1971) Increase of (Na+ K+)- dependent ATPase activity in gills and kidneys of two euryhaline marine teleosts, Crenimugil labrosus (Risso, 1826) and Dicentrarchus labrax (Linnaeus, 1758), during adaptation to fresh water. Life Sci 10:113–119CrossRefGoogle Scholar
  19. Lytle C, Xu JC, Biemesderfer D, Forbush III B (1995) Distribution and diversity of Na–K–Cl cotransporter proteins: a study with monoclonal antibodies. Am J Physiol 269:C1496–C1505CrossRefGoogle Scholar
  20. Marshall WS, Lynch EM, Cozzi RRF (2002) Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of killifish Fundulus heteroclitus to sea water. J Exp Biol 205:1265–1273PubMedGoogle Scholar
  21. Marshall WS, Grosell M (2006) Ion transport, osmoregulation and acid-base balance. In: Evans DH, Claiborne JB (eds) Physiology of fishes, vol 3. CRC Press, Boca Raton, pp177–230Google Scholar
  22. McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Can J Fish Aquat Sci 50:656–658CrossRefGoogle Scholar
  23. McCormick SD, Sundell K, Björnsson BT, Brown CL, Hiroi J (2003) Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J Exp Biol 206:4575–4583CrossRefGoogle Scholar
  24. Mizuhira V, Amakawa T, Yamashina S, Shirai N, Utida S (1969) Electron microscopic studies on the localization of sodium ions and soidum-potasium-activated adenosinetriphosphatase in chloride cells of eel gills. Exp Cell Res 59:346–348CrossRefGoogle Scholar
  25. Niederstätter H, Pelster B (2000) Expression of two vacuolar-type ATPase B subunit isoforms in swimbladder gas gland cells of the European eel: nucleotide sequences and deduced amino acid sequences. Biochim Biophys Acta 1491:133–142CrossRefGoogle Scholar
  26. Pelis RM, McCormick SD (2001) Effects of growth hormone and cortisol on Na+K+2Cl cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124:134–143CrossRefGoogle Scholar
  27. Pelis RM, Zydlewski J, McCormick SD (2001) Gill Na+-K+-2Cl cotransporter abundance and localization in atlantic salmon: effects of seawater and smolting. Am J Physiol 280:R1844–R1852Google Scholar
  28. Piermarini PM, Evans DH (2001) Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a eurhyaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J Exp Biol 204:3251–3259PubMedGoogle Scholar
  29. Piermarini PM, Verlander JW, Royaux IE, Evans DH (2002) Pendrin immunoreactivity in the gill epithelium of a euryhaline elasmobranch. Am J Physiol 283:R983–R992Google Scholar
  30. Perry SF, Goss GG, Laurent P (1992) The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can J Zool 70:1775–1786CrossRefGoogle Scholar
  31. Reid SD, Hawkings GS, Galvez F, Goss GG (2003) Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J Exp Biol 206:551–559CrossRefGoogle Scholar
  32. Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 260:4475–4486CrossRefGoogle Scholar
  33. Santos CR, Power DM, Kille P, Llewellyn L, Ramsurn V, Wigham T, Sweeney GE (1997) Cloning and sequencing of a full-length sea bream (Sparus aurata) beta-actin cDNA. Comp Biochem Physiol 117 B:185–189CrossRefGoogle Scholar
  34. Sasai S, Kaneko T, Hasegawa S, Tsukamoto K (1998) Morphological alteration in two types of gill chloride cells in Japanese eels (Anguilla japonica) during catadromous migration. Can J Zool 76:1480–1487CrossRefGoogle Scholar
  35. Sasai S, Katoh F, Kaneko T, Tsukamoto K (2006) Ontogenic change of gill chloride cells in leptocephalus and glass eel stages of the Japanese eel, Anguilla japonica. Mar Biol DOI 10.1007/s00227-006-0355-8Google Scholar
  36. Shrimpton JM, Patterson DA, Richards JG, Cooke SJ, Schulte PM, Hinch SG, Farrell AP (2005) Ionoregulatory changes in different populations of maturing sockeye salmon Oncorhynchus nerka during ocean and river migrations. J Exp Biol 208:4069–4078CrossRefGoogle Scholar
  37. Thomson AJ, Sargent JR (1977) Changes in the levels of chloride cells and (Na+ K+)-dependent ATPase in the gills of yellow and silver eels adapting to seawater. J Exp Zool 200:33–40CrossRefGoogle Scholar
  38. Tipsmark CK, Madsen SS, Seidelin M, Christensen AS, Cutler CP, Cramb G (2002) Dynamics of Na+, K+, 2Cl cotransporter and Na+, K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and atlantic salmon (Salmo salar). J Exp Zool 293:106–118CrossRefGoogle Scholar
  39. Tipsmark CK, Madsen SS, Borski RJ (2004) Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J Exp Zool 301A:979–991CrossRefGoogle Scholar
  40. Tosi L, Sola C, Spampanato A, Tongiorgi P (1989) The behaviour of glass-eels of Anguilla anguilla (L.) towards salinity: discrimination and preferences. Riv Ital Aquaculture 24:219–223Google Scholar
  41. Tsukamoto K, Arai T (2001) Facultative catadromy of the eel Anguilla japonica between freshwater and seawater habitats. Marine Ecol Prog Ser 220:265–276CrossRefGoogle Scholar
  42. Tesch FW (2003) The eel. Blackwell, London, p 416CrossRefGoogle Scholar
  43. Uchida K, Kaneko T, Miyazaki H, Hasegawa S, Hirano T (2000) Excellent salinity tolerance of mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool Sci 17:149–160CrossRefGoogle Scholar
  44. Ura K, Soyano K, Omoto N, Adachi S, Yamauchi K (1996) Localization of Na-K-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the α-subunit. Zool Sci 13:219–227CrossRefGoogle Scholar
  45. Utida S, Kamiya M, Shirai N (1971) Relationship between the activity of Na+-K+-activated adenosinetriphosphatase and the number of chloride cells in eel gills with special reference to sea-water adaption. Comp Biochem Physiol 38A:443–447CrossRefGoogle Scholar
  46. Wilson JM, Laurent P, Tufts BL, Benos DJ, Donowitz M, Vogl AW, Randall DJ (2000a) NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203:2279–2296Google Scholar
  47. Wilson JM, Randall DJ, Donowitz M, Vogl AW, Ip YK (2000b) Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203:2297–2310Google Scholar
  48. Wilson JM, Laurent P (2002) Fish gill morphology: inside out. J Exp Zool 293:192–213CrossRefGoogle Scholar
  49. Wilson JM, Antunes JC, Bouça PD, Coimbra J (2004) Osmoregulatory plasticity of the glass eel of Anguilla anguilla: freshwater entry and changes in branchial ion-transport protein expression. Can J Fish Aquat Sci 61:432–442CrossRefGoogle Scholar
  50. Wilson JM, Reis-Santos PN, Fonseca AV, Bouça PD, Antunes JC, Coimbra J (in press) Seasonal changes in iono regulatory parameters of the glass eel (Anguilla anguilla) following estuarine entry: comparison with resident elvers. J Fish BiolGoogle Scholar
  51. Wu YC, Lin LY, Lee TH (2003) Na+, K+, 2Cl cotransporter: a novel marker for identifying freshwater- and seawater-type mitochondriarich cells in gills of the euryhaline tilapia, Oreochromis mossambicus. Zool Stud 42:186–192Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jonathan Mark Wilson
    • 1
  • Alexandre Leitão
    • 2
  • Ana Filipa Gonçalves
    • 2
  • Catarina Ferreira
    • 2
  • Patrick Reis-Santos
    • 1
  • Ana-Violeta Fonseca
    • 1
  • Joana Moreira da Silva
    • 1
  • José Carlos Antunes
    • 1
    • 3
  • Cristina Pereira-Wilson
    • 2
  • João Coimbra
    • 1
    • 3
  1. 1.Laboratório de EcofisiologiaCentro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR)PortoPortugal
  2. 2.Dept. BiologiaUniversidade do MinhoBragaPortugal
  3. 3.Institute de Ciências Biomédicas de Abel Salazar (ICBAS)Universidade do PortoPortoPortugal

Personalised recommendations