Advertisement

Marine Biology

, Volume 151, Issue 4, pp 1299–1307 | Cite as

Hull fouling on commercial ships as a vector of macroalgal introduction

  • Frédéric Mineur
  • Mark P. Johnson
  • Christine A. Maggs
  • Herre Stegenga
Research Article

Abstract

Hull fouling is thought to have been the vector of introduction for many algal species. We studied ships arriving at a Mediterranean harbour to clarify the present role of commercial cargo shipping in algal introductions. A total of 31 macroalgal taxa were identified from 22 sampled hulls. The majority of records (58%) were of species with a known cosmopolitan geographical distribution. Due to a prevalence of cosmopolitan species and a high turnover of fouling communities, species composition of assemblages did not appear to be influenced by the area of origin, length of ship or age of coating. In the light of the present results, hull fouling on standard trading commercial vessels does not seem to pose a significant risk for new macroalgal species introductions. However, a high proportion of non-cosmopolitan species found on a ship with non-toxic coating may modify this assessment, especially in the light of the increasing use of such coatings and the potential future changes in shipping routes.

Keywords

Hull Macroalgae Ulva Ballast Water International Maritime Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Jean-Michel Albano and all the crew of the “Société de Lamanage” for their help during the sampling operations; Philippe Friboulet and the harbour authorities; François Lafaille and all the shipping agencies in Sète (Sea Invest, SOGEMA, Navitrans, Ferrari, NTV Sogena, CGMS, Delpierre, NS Suquet); Thomas Belsher and Lionel Loubersac (IFREMER) for providing lab space; and Marc Verlaque for his advice. This study was supported by an EU framework VI contract: introduced algae in European waters (ALIENS).

References

  1. Arias E, Morales E (1963) Ecologia del Puerto de Barcelona y desarollo de adherencias organicas sobre embarcaciones. Invest Pesq 24:139–163Google Scholar
  2. Belsher T, Bailly de Bois P, Salou N (1984) Expansion de l’algue d’origine japonaise, Sargassum muticum (Yendo) Fensholt, sur les côtes françaises de 1983 à 1984. Cah Biol Mar 25:449–455Google Scholar
  3. Boudouresque CF, Verlaque M (2002a) Assessing scale and impact of ship-transported alien macrophytes in the Mediterranean Sea. In: Briand F (ed) Alien marine organisms introduced by ships in the Mediterranean and Black seas. Workshop Monographs n° 20, CIESM, Monaco, pp 53–62Google Scholar
  4. Boudouresque CF, Verlaque M (2002b) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Mar Pollut Bull 44:32–28CrossRefGoogle Scholar
  5. Brass GW (2002) Arctic Ocean climate change. Special Publication, US Arctic Research Commission, ArlingtonGoogle Scholar
  6. Callow ME (1986) Fouling algae from “in service” ships. Bot Mar 24:351–357Google Scholar
  7. Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol Annu Rev 23:313–371Google Scholar
  8. Carlton JT (1996a) Biological invasions and cryptogenic species. Ecology 77:1653–1655CrossRefGoogle Scholar
  9. Carlton JT (1996b) Pattern, process, and prediction in marine invasion ecology. Biol Conserv 78:97–106CrossRefGoogle Scholar
  10. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
  11. Carlton JT, Hodder J (1995) Biogeography and dispersal of coastal marine organisms: experimental studies on a replica of 16th century sailing vessel. Mar Biol 121:721–730CrossRefGoogle Scholar
  12. Carlton JT, Scanlon JA (1985) Progression and dispersal of an introduced alga: Codium fragile subsp. tomentosoides (Chlorophyta) on the Atlantic Coast of North America. Bot Mar 28:155–165CrossRefGoogle Scholar
  13. Champ MA (2001) The status of the treaty to ban TBT in marine antifouling paints and alternatives. In: Proceedings of the 24th UJNR (US/Japan) Marine Facilities Panel Meeting, HawaiiGoogle Scholar
  14. Chopin T, Bird CJ, Murphy CA, Osborne JA, Patwary MU, Floc’h JY (1996) A molecular investigation of polymorphism in the North Atlantic red alga Chondrus crispus (Gigartinales). Phycol Res 44:69–80CrossRefGoogle Scholar
  15. Clarke KR, Warwick RR (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Natural Environment Research Council, UKGoogle Scholar
  16. Coutts ADM (1999) Hull fouling as a modern vector for marine biological invasions: investigation of merchant vessels visiting northern Tasmania. Unpublished MSc thesis, Australian Maritime College, Launceston, AustraliaGoogle Scholar
  17. Coutts ADM, Taylor MD (2004) A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand. N Z J Mar Freshwater Res 38:215–229CrossRefGoogle Scholar
  18. Critchley AT, Farnham WF, Morrell SL (1983) A chronology of new European sites of attachment for the invasive brown alga, Sargassum muticum, 1973–1981. J Mar Biol Assoc UK 63:799–811CrossRefGoogle Scholar
  19. Dromgoole FI (1975) Occurrence of Codium fragile subspecies tomentosoides in New Zealand waters. N Z J Mar Freshwater Res 38:215–229Google Scholar
  20. Dumoulin E, De Blauwe H (1999) Het Bruinwier Undaria pinnatifida (Harvey) Suringar (Phaeophyta: Laminariales) aagetroffen in de jachthaven van Zeebrugge: met gegevens over het voorkomen in Europa en de wijze van verspreiding. De Strandvlo 19:182–188Google Scholar
  21. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  22. Fletcher RL, Farrell P (1999) Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgoländer Meeresuntersuchungen 52:259–275CrossRefGoogle Scholar
  23. Floc’h JY, Pajot R, Mouret V (1996) Undaria pinnatifida (Laminariales, Phaeophyta) 12 years after its introduction into the Atlantic Ocean. Hydrobiologia 326/327:217–222CrossRefGoogle Scholar
  24. Floerl O, Inglis GJ (2005) Starting the invasion pathway: the interaction between source populations and human transport vectors. Biol Invasions 7:589–606CrossRefGoogle Scholar
  25. Foster BA, Willan RC (1979) Foreign barnacles transported to New Zealand on an oil platform. N Z J Mar Freshwater Res 13:143–149CrossRefGoogle Scholar
  26. Godwin LS (2003) Hull fouling of maritime vessels as a pathway for marine species invasions to the Hawaiian Islands. Biofouling 19:123–131CrossRefGoogle Scholar
  27. Gollasch S, MacDonald E, Belson S, Botnen H, Christensen JT, Hamer JP, Houvenaghel G, Jelmert A, Lucas I, Masson D, McCollin T, Olenin S, Persson A, Wallentinus I, Wetsteyn LPMJ, Wittling T (2002) Life in ballast tanks. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer, The Netherlands, pp 217–231CrossRefGoogle Scholar
  28. Guiry MD (2006) AlgaeBase version 4.1. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 15 June 2006
  29. Halos MT (1965) Sur trois Callithamniées des environs de Roscoff. Cah Biol Mar 6:117–134Google Scholar
  30. Hay CH (1990) The dispersal of sporophytes of Undaria pinnatifida by coastal shipping in New Zealand and implications for further dispersal of Undaria in France. Brit Phycol J 25:301–313CrossRefGoogle Scholar
  31. Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GC, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202CrossRefGoogle Scholar
  32. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204CrossRefGoogle Scholar
  33. Lenz J, Andres HG, Gollasch S, Dammer M (2000) Einschleppung fremder Organismen in Nord- und Ostsee: Untersuchungen zum ökologischen Gefahrenpotential durch den Schiffsverkehr. Report, Umweltbundesamt, BerlinGoogle Scholar
  34. Lewis J (2002) Hull fouling as a vector for the translocation of marine organisms. Phase 3: the significance of the prospective ban on tributyltin antifouling paints on the introduction and translocation of marine pests in Australia. Report, AMOG Consulting, MelbourneGoogle Scholar
  35. Lewis PN, Hewitt CL, Riddle M, McMinn A (2003) Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity. Mar Pollut Bull 46:213–223CrossRefGoogle Scholar
  36. Lewis PN, Riddle MJ, Hewitt CL (2004) Management of exogenous threats to Antarctica and the sub-Antarctic Islands: balancing risks from TBT and non-indigenous marine organisms. Mar Pollut Bull 49:999–1005CrossRefGoogle Scholar
  37. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228CrossRefGoogle Scholar
  38. López Bautista JM, Waters DA, Fredericq S, Chapman RL (2003) Marine algae from the oil/gas platforms in the northwestern Gulf of Mexico. J Phycol 39:37–38Google Scholar
  39. Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles, vol 1. Rhodophyta. Part 3A: Ceramiales. HMSO, LondonGoogle Scholar
  40. Meinesz A (1999) Killer algae: the true tale of a biological invasion. The University of Chicago Press, ChicagoGoogle Scholar
  41. Meinesz A, Belsher T, Thibaut T, Antolic B, Mustapha KB, Boudouresque CF, Chiaverini D, Cinelli F, Cottalorda JM, Djellouli A, El Abed A, Orestano C, Grau AM, Ivesa L (2001) The introduced green alga Caulerpa taxifolia continues to spread in the Mediterranean. Biol Invasions 3:201–210CrossRefGoogle Scholar
  42. Meyer U, Meinesz A (2001) Inquiry of the aquarium cultivation of Caulerpa taxifolia in Europe before its introduction into the Mediterranean Sea. In: Gravez V, Ruitton S, Boudouresque CF, Le Direac’h L, Meinesz A, Scabbia G, Verlaque M (eds) Fourth International Workshop on Caulerpa taxifolia. GIS Posidonie publications, Marseille, pp 7–11Google Scholar
  43. Minchin D, Gollasch S (2003) Fouling and ships’ hulls: how changing circumstances and spawning events may result in the spread of exotic species. Biofouling 19:111–122CrossRefGoogle Scholar
  44. Moss BL, Tovey D, Court P (1981) Kelp as fouling organisms on North Sea platforms. Bot Mar 24:207–209CrossRefGoogle Scholar
  45. Rainer SF (1995) Potential for the introduction and translocation of exotic species by hull fouling: a preliminary assessment. Technical Report, CSIRO, Centre for Research on Introduced Marine Pests, AustraliaGoogle Scholar
  46. Relini G, Rossi GG, Lombardi E (1972) Osservazioni sul fouling della nave oceanografica “Bannock” dopo un anno di crociere mediterranea. Boll Mus Ist Biol Univ Genova 40:99–129Google Scholar
  47. Ribera-Siguan MA (2002) Review of non-native marine plants in the Mediterranean Sea. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer, The Netherlands, pp 291–310CrossRefGoogle Scholar
  48. Santolaria A, Gorostiaga M, Secilla A, Diez I (1997) Fragmenta chorologia occidentalia, Algae, 6059–6083. An Jard Bot Madr 55:440–442Google Scholar
  49. Sartoni G, Sarti M (1976) Sulla presenza a Livorno di “Aglaothamnion feldmanniae” L’Hardy-Halos. Inform Bot Ital 8:185Google Scholar
  50. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave 2003. Nature 432:610–614CrossRefGoogle Scholar
  51. Thornber CS, Kinlan BP, Graham MH, Stachowicz JJ (2004) Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar Ecol Prog Ser 268:69–80 CrossRefGoogle Scholar
  52. Verlaque M (1989) Contribution à la flore des algues marines de Méditerranée: espèces rares ou nouvelles pour les côtes françaises. Bot Mar 32:101–113CrossRefGoogle Scholar
  53. Visscher JP (1928) Nature and extent of fouling on ships’ bottoms. Bull Bur Fish 43:193–252Google Scholar
  54. Wallentinus I (2002) Introduced marine algae and vascular plants in European aquatic environments. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer, The Netherlands, pp 27–52CrossRefGoogle Scholar
  55. Weigle SM, Smith LD, Carlton JT, Pederson J (2005) Assessing the risk of introducing exotic species via the live marine species trade. Conserv Biol 19:213–223CrossRefGoogle Scholar
  56. Wiegemann M, Watermann B (2001) Erfahrungen mit TBT-freien Schiffsanstrichen: Akzeptanz von TBT-freien Antifouling-Farben bei deutschen Reedern und Werften. WWF Deutschland, Frankfurt-am-MainGoogle Scholar
  57. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666CrossRefGoogle Scholar
  58. Wonham MJ, Carlton JT, Ruiz GM, Smith LD (2000) Fish and ships: relating dispersal frequency to success in biological invasions. Mar Biol 136:1111–1121CrossRefGoogle Scholar
  59. Zuccarello GC, West JA (2003) Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J Phycol 39:948–959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Frédéric Mineur
    • 1
  • Mark P. Johnson
    • 1
  • Christine A. Maggs
    • 1
  • Herre Stegenga
    • 2
  1. 1.School of Biological SciencesQueen’s University Belfast, Medical Biology CentreBelfastUK
  2. 2.National Herbarium of the Netherlands2300 RA LeidenThe Netherlands

Personalised recommendations