Advertisement

Marine Biology

, Volume 151, Issue 4, pp 1225–1236 | Cite as

Differences in photosynthetic pigment signatures between phytoneuston and phytoplankton communities in a coastal lagoon of Baja California

  • Martín A. Montes-Hugo
  • Saúl Alvarez-Borrego
Research Article

Abstract

In order to understand the relationships between the dynamics of phytoplankton populations in the surface microlayer (MIL) and in the water column below (SSW), this study used high-performance liquid chromatography-derived pigment markers in samples from a coastal lagoon of Baja California (Estero de Punta Banda, EPB) under summer (October 2003) and winter (December 2003) conditions. Photosynthetic pigment signatures of phytoplankton at the air–sea interface (phytoneuston) and subsurface measurements were related to bottom-up (temperature, salinity, nutrient concentrations) and top-down factors (zooplankton abundance). Slicks and scum layers were observed in the inner part of the lagoon and coincided with greater stratification of layers just below the sea surface and lower wind intensities. In general, spatial variability in pigment markers and ancillary data was very high and resulted in non-significant differences between MIL and subsurface samples when different regions of EPB or sampling dates were compared. However, different patterns were found between pigments and environmental factors of MIL and SSW samples when the relative numbers of stations with positive and negative differences (ΔXXMILXSSW) were computed. For each survey, pigment markers of phytoneuston and phytoplankton samples were not necessarily correlated. Further analysis revealed that those markers (19′-butanoyloxyfucoxanthin, prasinoxanthin, divinil-chlorophyll a) corresponded to picophytoplankton groups (haptophyte, prasinophyte, and prochlorophyte). On both dates, the MIL was enriched in 19′-hexanoyloxyfucoxanthin (a marker for a type 4 haptophyte) and fucoxanthin (marker for bacillariophytes, haptophytes, and crysophytes) and depleted in peridinin (marker for dinophytes). Different zooplankton grazers accumulated in the MIL (loricate tintinnids) and in SSW (copepod nauplii).

Keywords

Phytoplankton Dinoflagellate Coastal Lagoon Fucoxanthin Peridinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Sharon Herzka for logistic support during surveys and Dr. Ernesto Garcia-Mendoza for assistance with analysis of HPLC samples.

References

  1. Acosta-Ruiz, MJ, Alvarez-Borrego S (1974) Distribución superficial de algunos parámetros hidrológicos físicos y químicos en el Estero de Punta Banda, B.C., en otoño e invierno. Cienc Mar 1:16–45 (in Spanish)CrossRefGoogle Scholar
  2. Agogué H, Casamayor E, Bourrain M, Obernoster I, Joux F, Herndl GJ, Lebaron P (2005) A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54:269–280CrossRefGoogle Scholar
  3. Camacho-Ibar VF, Alvarez-Borrego S (1988) Nutrient concentrations in pore waters of intertidal sediments in a coastal lagoon: patchiness and temporal variations. Sci Total Environ 75:325–339CrossRefGoogle Scholar
  4. Carlson DJ (1982) Phytoplankton in marine surface microlayers. Can J Microbiol 28:1226–1234CrossRefGoogle Scholar
  5. De Souza Lima Y, Chretiennot-Dinet MJ (1984) Measurements of biomass and activity of neustonic microorganisms. Est Coast Shelf Sci 19:167–180CrossRefGoogle Scholar
  6. Frew NM, Bock E, Schimpf U, Hara T, Haußeker H, Edson JB, McGillis WR, Nelson RK, McKenna SP, Mete UW, Jähne B (2004) Air–sea gas transfer: its dependence on wind stress, small-scale roughness, and surface films. J Geophys Res C 109:1–13CrossRefGoogle Scholar
  7. Galindo-Bect MS, Galindo-Bect LA, Hernández-Ayón JM, Ley-Lou F, Alvarez-Borrego S (1999) Effect of El Niño on the nutrients and total organic carbon of a coastal lagoon of northwestern Baja California. Cienc Mar 25:225–237CrossRefGoogle Scholar
  8. GESAMP (1995) The Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP, report 59, http://www.gesamp.imo.org/no59/
  9. Hardy JT (1971) Ecology of phytoneuston in a temperate marine lagoon. PhD thesis, University of WashingtonGoogle Scholar
  10. Hardy JT (1973) Phytoneuston ecology of a temperate lagoon. Limnol Oceanogr 18:525–533CrossRefGoogle Scholar
  11. Hardy JT (1982) The sea surface microlayer: biology, chemistry and antropogenic enrichment. Prog Oceanogr 11:307–328CrossRefGoogle Scholar
  12. Hardy JT, Apts CW (1984) The sea-surface microlayer: phytoneuston productivity and effects of atmospheric particulate matter. Mar Biol 82:293–300CrossRefGoogle Scholar
  13. Hardy JT, Apts CW (1989) Photosynthetic carbon reduction: high rates in the sea-surface microlayer. Mar Biol 101:411–417CrossRefGoogle Scholar
  14. Hardy JT, Valett M (1981) Natural and microcosm phytoneuston communities of Sequim Bay, Washington. Est Coast Shelf Sci 12:3–12CrossRefGoogle Scholar
  15. Hinga KR (1992) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300CrossRefGoogle Scholar
  16. Ibarra-Obando SE, Escofet A (1987) Industrial development effects on the ecology of a Pacific Mexican estuary. Environ Conserv 14:135–141CrossRefGoogle Scholar
  17. Ibarra-Obando SE, Poumian-Tapia M (1991) The effect of tidal exclusion on salt marsh vegetation in Baja California, Mexico. Wetlands Ecol Manage 1:131–148CrossRefGoogle Scholar
  18. Ibarra-Obando SE, Camacho-Ibar VF, Carriquiry JD, Smith SV (2000) Upwelling and lagoonal ecosystems of the dry Pacific coast of Baja California. In: Seeliger U, Kjerfve B (eds) Ecological studies 144, Coastal marine ecosystems of Latin America. Springer, Berlin Heidelberg New York, pp 315–329Google Scholar
  19. Ignatiades L (1990) Photosynthetic capacity at the surface microlayer during the mixing period. J Plankton Res 12:851–860CrossRefGoogle Scholar
  20. Jeffrey SW, Llewellyn CA, Barlow RG, Mantoura RFC (1997) Pigment processes in the sea: a selected bibliography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. A guide to advanced methods. SCOR-UNESCO, Paris, pp 167–178Google Scholar
  21. Joux F, Agogué H, Obernosterer I, Dupuy C, Reinthaler T, Herndl GJ, Lebaron P (2006) Microbial community structure in the sea surface microlayer at two contrasting coastal sites in the northwestern Mediterranean Sea. Aquat Microb Ecol 42:91–104CrossRefGoogle Scholar
  22. Lara-Lara JR, Alvarez-Borrego S, Small LF (1980) Variability and tidal exchange of ecological properties in a coastal lagoon. Est Coast Shelf Sci 2:13–637Google Scholar
  23. Lewitus AJ, Koepfler ET, Morris JT (1998) Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt-marsh estuary. Limnol Oceanogr 43:636–646CrossRefGoogle Scholar
  24. Lin Y, Zhang ZL,Wang J, Zhang E, Tan L, Zhao W (1998) The pH, alkalinity, density and surface tension of the surface microlayer and subsurface water in the Nansha Region. J Ocean Univ Qingdao 28:633–640Google Scholar
  25. Mantoura RFC, Jeffrey SW, Llewellyn CA, Claustre H, Morales CE (1997) Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis. In: Jeffrey SW et al (eds) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris, pp 361–380Google Scholar
  26. Manzi JJ, Stofan PE, Dupuy JL (1977) Spatial heterogeneity of phytoplankton populations in eastuarine surface microlayers. Mar Biol 41:29–38CrossRefGoogle Scholar
  27. Momzikoff A, Brinis A, Dallot S, Gondry G, Saliot A, Lebaron P (2004) Field study of the chemical characterization of the top ocean surface using various samplers. Limnol Oceanogr Methods 2:374–386CrossRefGoogle Scholar
  28. Montes-Hugo M (2001) Primary productivity models of phytoplankton in coastal systems Centro de Investigación y Educación Superior de Ensenada, CICESE, México, 180 ppGoogle Scholar
  29. Montes-Hugo MA, Alvarez-Borrego S, Giles Guzmán A (2003) Estimating underwater PAR attenuation using a horizontal sighting instrument in a coastal lagoon of Baja California. Estuaries 26:1302–1309CrossRefGoogle Scholar
  30. Montes-Hugo MA, Alvarez-Borrego S, Gaxiola-Castro G (2004) Annual phytoplankton production in a coastal lagoon of the southern California current system. Mar Ecol Prog Ser 277:51–60CrossRefGoogle Scholar
  31. Obernosterer I, Ctala P, Reinthaler T, Herndl GJ, Lebaron P (2005) Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea. Aquat Microb Ecol 39:293–302CrossRefGoogle Scholar
  32. Peña-Manjarrez JL, Gaxiola-Castro G, Belenes-Escamilla J, Orellana-Cepeda E (2001) Cyst of Lingulodinium polyedrum, red tide producing organism in Todos Santos Bay (winter–spring, 2000). Cienc Mar 27:543–558CrossRefGoogle Scholar
  33. Pritchard DW, De-La-Paz-Vela R, Cabrera-Muro H, Farreras-Sanz S, Morales E (1978) Hidrografia fisica del Estero de Punta Banda Parte I: Análisis de datos. Cienc Mar 5: 1–23 (in Spanish)CrossRefGoogle Scholar
  34. Rocha C, Galvão H, Barbosa A (2002) Role of transient silicon limitation in the development of cyanobacteria blooms in the Guadiana estuary, south-western Iberia. Mar Ecol Prog Ser 228:35–45CrossRefGoogle Scholar
  35. Schimpf U, Garbe C, Jaehne B (2004) Investigation of transport processes across the sea surface microlayer by infrared imagery. J Geophys Res 109:c8CrossRefGoogle Scholar
  36. Schlüter L, Møhlenberg F, Havskum H (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar Ecol Prog Ser 192:49–63CrossRefGoogle Scholar
  37. Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman, New York, 498 ppGoogle Scholar
  38. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada, pp 1–167Google Scholar
  39. Utermöhl H (1958) Zur vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologic 9:1–38Google Scholar
  40. Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr 910:31–49CrossRefGoogle Scholar
  41. Zaitsev Y (1992) Recent changes in the trophic structure of the Black Sea. Fish Oceanogr 1:180–189CrossRefGoogle Scholar
  42. Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Martín A. Montes-Hugo
    • 1
  • Saúl Alvarez-Borrego
    • 2
  1. 1.Integrative Oceanographic DivisionScripps Institution of OceanographyLa JollaUSA
  2. 2.División de OceanologíaCICESEEnsenadaMexico

Personalised recommendations