Advertisement

Marine Biology

, Volume 151, Issue 3, pp 863–871 | Cite as

Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea

  • Sabine Holst
  • Gerhard Jarms
Research Article

Abstract

The settlement behaviour of planula larvae and their development to young polyps was investigated in laboratory experiments in five scyphozoan species [Aurelia aurita (L.), Cyanea capillata (L.), Cyanea lamarckii Péron and Leseur, Chrysaora hysoscella (L.), and Rhizostoma octopus (L.)]. The undersides of settling plates were strongly preferred for settlement. Shells, the only natural substrate type offered, were less attractive than artificial substrates (concrete, machined wood, polyethylene, and glass). The advantages of colonization of substrate undersides for survival and reproduction of polyps are discussed. It is supposed that the increase of artificial substrates in our seas, due to marine litter pollution and submarine building activities, enlarge the areas of distribution of scyphozoan polyps, in coastal as well as in off-shore regions. Subsequent increases in ephyra production by polyps are probably one reason for the increase in mass occurrences of jellyfish recognized worldwide during the last few decades. It is suggested that the early developmental stages in the cnidarian life cycle, the planula larvae, and the polyps, play the key role in the development of jellyfish outbursts.

Keywords

Artificial Substrate German Bight Polyp Population Genital Sinus Flagellar Beat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank the Biologische Anstalt Helgoland for providing the research facilities. We thank Dr. Blair Johnston for english-language editing of the manuscript. This work is part of a PhD thesis (in preparation). The work was conducted under the project EUROGEL, supported by the European Commission through Contract No. EVK3-CT-2002-00074.

References

  1. Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, LondonGoogle Scholar
  2. Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451:69–87CrossRefGoogle Scholar
  3. Berrill NJ (1949) Developmental analysis of scyphomedusae. Biol Rev 24:393–410Google Scholar
  4. Brewer RH (1976) Larval settling behavior in Cyanea capillata (Cnidaria: Scyphozoa). Biol Bull 150:183–199CrossRefGoogle Scholar
  5. Brewer RH (1978) Larval settlement behavior in the jellyfish Aurelia aurita (Linnaeus) (Scyphozoa: Semaeostomeae). Estuaries 1:120–122CrossRefGoogle Scholar
  6. Brewer RH (1984) The influence of the orientation, roughness, and wettability of solid surfaces on the behavior and attachment of planulae of Cyanea (Cnidaria: Scyphozoa). Biol Bull 166:11–21CrossRefGoogle Scholar
  7. Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8:296–306CrossRefGoogle Scholar
  8. Cargo DG (1966) Notes on the biology of the sea nettle, Chrysaora quinquicirrha, in Chesapeake Bay. Chesap Sci 7(2):95–100CrossRefGoogle Scholar
  9. Cargo DG (1979) Observations of the settling behavior of planular larvae of Chysaora quinquecirrha. Int J Invertebr Reprod 1:279–287Google Scholar
  10. Chapman DM (1973) Behavior and flagellar currents in coronate polyps (Scyphozoa) and comparison with semaeostome polyps. Helgoländer wiss Meeresunters 25:214–227CrossRefGoogle Scholar
  11. CIESM (2001) Gelatinous zooplankton outbreaks: theory and practice, vol 14, MonacoGoogle Scholar
  12. Claus C (1877) Studien über Polypen und Quallen der Adria. I. Acalephen (Discomedusen). Denkschr Akad Wiss 38:1–64Google Scholar
  13. Daskalov GM (2002) Overfishing drives a trophic cascade in the Black Sea. Mar Ecol Progress Ser 225:53–63Google Scholar
  14. Delap M (1901) Notes on rearing of Chrysaora isosceles in an aquarium. Ir Nat 10:25–28Google Scholar
  15. Duffy JT, Epifanio CE, Fuiman LA (1997) Mortality rates imposed by three scyphozoans on red drum (Sciaenops ocellatus Linnaeus) larvae in field enclosures. J Exp Mar Biol Ecol 212:126–131CrossRefGoogle Scholar
  16. Gröndahl F (1988) A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and Cyanea lamarkii in the Gullmar Fjord, western Sweden. Mar Biol 97:541–550CrossRefGoogle Scholar
  17. Hargitt CW, Hargitt GT (1910) Studies on the development of Scyphomedusae. J Morphol 21:217–262CrossRefGoogle Scholar
  18. Hartwig E (2000) Die Müllbelastung der Insel Scharhörn 1992–1994. Seevögel 21Google Scholar
  19. Hartwig E (2001) Die Müllbelastung im Mündungsbereich der Elbe 1996. Seevögel 22Google Scholar
  20. Hay SJ, Hislop JRG, Shanks AM (1990) North Sea Scyphomedusae; summer distribution, estimated biomass and significance particularly for 0-group gadoid fish. Neth J Sea Res 25:113–130CrossRefGoogle Scholar
  21. Hernroth L, Gröndahl F (1985) On the biology of Aurelia aurita (L.): 3. Predation by Coryphella verrucosa (Gastropoda, Opisthobranchia), a major factor regulating the development of Aurelia populations in the Gullmar Fjord, western Sweden. Ophelia 24:37–45Google Scholar
  22. Holst S, Jarms G (2006) Responses of solitary and colonial coronate polyps (Cnidaria, Scyphozoa, Coronatae) to sedimentation and burial. J Exp Mar Biol Ecol 230–238Google Scholar
  23. Kikinger R (1992) Cotylorhiza tuberculata (Cnidaria: Scyphozoa)—life history of a stationary population. Mar Ecol 13(4):333–362Google Scholar
  24. Korn H (1966) Zur ontogentischen Differenzierung der Coelenteratengewebe (Polypenstadium) unter besonderer Be-rücksichtigung des Nervensystems. Z Morph Ökol Tiere 57:1–118CrossRefGoogle Scholar
  25. Kozloff EN (1983) Seashore life of the northern Pacific coast. University of Washington Press, SeattleGoogle Scholar
  26. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Ass UK 40:5–469Google Scholar
  27. Kroiher M, Berking S (1999) On natural metamorphosis inducers of the cnidarian Hydractinia echinata (Hydrozoa) and Aurelia aurita (Scyphozoa). Helgol Mar Res 53:118–121CrossRefGoogle Scholar
  28. Lotan A, Loya BH, Loya Y (1992) Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Mar Biol 112:237–242CrossRefGoogle Scholar
  29. Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246CrossRefGoogle Scholar
  30. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493PubMedCrossRefGoogle Scholar
  31. Mayer AG (1910) Medusae of the World, vol 3. Carnegie Institution, WashingtonGoogle Scholar
  32. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  33. Miyake H, Iwao K, Kakinuma Y (1997) Life history and environment of Aurelia aurita. South Pac Stud 17:273–285Google Scholar
  34. Müller WA, Leitz T (2002) Metamorphosis in the Cnidaria. Can J Zool 80:1755–1771CrossRefGoogle Scholar
  35. Nagai T (2003) Recovery of fish stocks in the Seto Inland Sea. Mar Pollut Bull 47:126–131PubMedCrossRefGoogle Scholar
  36. Nordström K, Wallén R, Seymour J, Nilsson D (2003) A simple visual system without neurons in jellyfish larvae. Proc R Soc Lond B 270:2349–2354CrossRefGoogle Scholar
  37. Östman C (1997) Abundance, feeding behaviour and nematocysts of scyphopolyps (Cnidaria) and nematocysts in their predator, the nudibranch Coryphella verrucosa (Mollusca). Hydrobiologia 355:21–28CrossRefGoogle Scholar
  38. Pitt KA (2000) Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Biol 136:269–279CrossRefGoogle Scholar
  39. Purcell JE, Graham WM, Dumont HJ (2001) Jellyfish Blooms: ecological and societal importance. Hydrobiologia 451:1–333CrossRefGoogle Scholar
  40. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Ass UK 85:461–476CrossRefGoogle Scholar
  41. Rees WJ (1957) Evolutionary trends in the classification of capitate hydroids and medusae. Bull Br Mus (Nat Hist) Zool 4:455–534Google Scholar
  42. Russell FS (1970) The medusae of the British Isles II. Pelagic Scyphozoa with a supplement to the first volume on Hydromedusae, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  43. Svane I, Dolmer P (1995) Perception of light at settlement: a comparative study of two invertebrate larvae, a scyphozoan planula and a simple ascidian tadpole. J Exp Mar Biol Ecol 187:51–61CrossRefGoogle Scholar
  44. Thiel M E (1962) Untersuchungen zur Artfrage von Cyanea lamarckii Pér. et. Les. und Cyanea capillata L. Abh Verh Naturw Verein Hamburg NF 6:277–293Google Scholar
  45. Werner B (1984) Cnidaria. In: Gruner HE (ed) Lehrbuch der Speziellen Zoologie, Vol 1. Gustav Fisher Verlag, Jena, pp 11–305Google Scholar
  46. Widersten B (1965) Genital organs and fertilization in some Scyphozoa. Zool Bidr Upps 37:45–61Google Scholar
  47. Widersten B (1968) On the morphology and development in some cnidarian larvae. Zool Bidr Upps 37:139–182Google Scholar
  48. Wieczorek SK, Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Universität Hamburg, Biozentrum Grindel und Zoologisches MuseumHamburgGermany

Personalised recommendations