Advertisement

Marine Biology

, Volume 151, Issue 2, pp 793–802 | Cite as

Anguilliform fishes and sea kraits: neglected predators in coral-reef ecosystems

  • I. Ineich
  • X. BonnetEmail author
  • F. Brischoux
  • M. Kulbicki
  • B. Séret
  • R. Shine
Research Article

Abstract

Despite intensive sampling efforts in coral reefs, densities and species richness of anguilliform fishes (eels) are difficult to quantify because these fishes evade classical sampling methods such as underwater visual census and rotenone poisoning. An alternative method revealed that in New Caledonia, eels are far more abundant and diverse than previously suspected. We analysed the stomach contents of two species of sea snakes that feed on eels (Laticauda laticaudata and L. saintgironsi). This technique is feasible because the snakes return to land to digest their prey, and (since they swallow their prey whole) undigested food items are identifiable. The snakes’ diet consisted almost entirely (99.6%) of eels and included 14 species previously unrecorded from the area. Very large populations of snakes occur in the study area (e.g. at least 1,500 individuals on a small coral islet). The snakes capture approximately 36,000 eels (972 kg) per year, suggesting that eels and snakes play key roles in the functioning of this reef ecosystem.

Keywords

Rotenone Prey Item Reef Flat Underwater Visual Census Prey Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We warmly thank the Aquarium de Nouméa, the Direction des Ressources Naturelles de la Province Sud and the IRD de Nouméa for logistical support. We are especially grateful to F. DeRiberolles, F. Devinck, C. Goiran, J. Halatas, P. Leblanc and Sylvain. Rex Cambag organised field trips and helped to mettre la rouste à la coinche aux parigots. Funding was provided by the Programme pluri-formation “Biodiversité terrestre en Nouvelle-Calédonie”, Muséum National d’Histoire Naturelle and Ministère de la Recherche (XB and II) and the Australian Research Council (RS). The study was carried out under permit number 6024–1141/DRN/ENV.

References

  1. Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. MEPS 206:227–237CrossRefGoogle Scholar
  2. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285CrossRefGoogle Scholar
  3. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefGoogle Scholar
  4. Bonnet X, Naulleau G (1996) Catchability in snakes: consequences on breeding frequency estimates. Can J Zool 74:233–239CrossRefGoogle Scholar
  5. Bonnet X, Pearson D, Ladyman M, Lourdais L, Bradshaw D (2002) “Heaven” for serpents? A mark-recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia. Aust Ecol 27:442–450CrossRefGoogle Scholar
  6. Bonnet X, Ineich I, Shine R (2005) Terrestrial locomotion in sea snakes: effects of sex and species on cliff-climbing ability in sea kraits (Serpentes, Laticauda). Biol J Linnean Soc 85:433–441CrossRefGoogle Scholar
  7. Buckland ST, Anderson DR, Burhnam KP, Laake JL (1993) Distance sampling—estimating abundance of biological populations. Chapman and Hall, LondonGoogle Scholar
  8. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling. Estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  9. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystems. Bioscience 35:634–639CrossRefGoogle Scholar
  10. Cogger H, Heatwole H (2005) Laticauda frontalis De Vis, 1905 and Laticauda sp. Nov. representing a new clade of sea kraits from the Republic of Vanuatu and New Caledonia (Serpentes: Elapidae: Laticaudinae). Records of the Australian Museum 57, (in press)Google Scholar
  11. Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410CrossRefGoogle Scholar
  12. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558CrossRefGoogle Scholar
  13. Harvey E, Fletcher D, Shortis M (2000) A comparison of the precision and accuracy of estimates of reef-fish lengths determined visually by divers with estimates produced by a stereo-video system. Fish Bull 99:63–71Google Scholar
  14. Heatwole H (1999) Sea snakes Australian Natural History Series. University of New South WalesGoogle Scholar
  15. Heatwole H, Busack S, Cogger H (2005) Geographic variation in sea kraits of the Laticauda colubrina complex (Serpentes: Elapidae: Hydrophiinea: Laticaudini). Herpetol Monogr 19:1–136CrossRefGoogle Scholar
  16. Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 265:1547–1551CrossRefGoogle Scholar
  17. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefGoogle Scholar
  18. Ineich I, Laboute P (2002) Sea snakes of New Caledonia. IRD et Muséum national d’Histoire naturelle Editions, Collection Faune et flore tropicales, ParisGoogle Scholar
  19. Jennings S, Polunin NVC (1995) Biased underwater visual census biomass estimates for target-species in tropical reef fisheries. J Fish Biol 47:733–736CrossRefGoogle Scholar
  20. Kulbicki M (1988) Correlation between catch data from bottom longlines and fish census in the south-west lagoon of New Caledonia. In: Proceedings of 6th international coral reef symposium, Townsville, vol 2, pp 305–312Google Scholar
  21. Kulbicki M (1997) Bilan de 10 ans de recherche (1985–1995) par l’ORSTOM sur la structure des communautés des poissons lagonaires et récifaux en Nouvelle-Calédonie. Cybium 21:47–79Google Scholar
  22. Kulbicki M, Sarramégna S (1999) Adequacy of several density estimates obtained from underwater visual censuses: a case study of Chaetodontidae and Pomacanthidae. Aquat Living Resour 12:315–325CrossRefGoogle Scholar
  23. Kulbicki M, Wantiez L (1990) Comparison between fish bycatch from shrimp trawlnet and visual censuses in St. Vincent Bay, New Caledonia. Fish Bull 88:667–675Google Scholar
  24. Kulbicki M, Labrosse P, Letourneur Y (2000) Stock assessment of commercial fishes in the northern New Caledonian lagoon-2-lagoon bottom and near reef fishes. Aquat Living Resour 13:77–90CrossRefGoogle Scholar
  25. Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for Pacific lagoon fishes. Cybium 29:235–252Google Scholar
  26. Letourneur Y, Kulbicki M, Labrosse P (2000) Commercial demersal fish stock assessment of the Northern New Caledonian Lagoon: 1-coral reef fish communities. Aquat Living Resour 13:65–76CrossRefGoogle Scholar
  27. Linden O (1999) Coral mortality in the tropics: massive causes and effects. Ambio 27:588Google Scholar
  28. McCann KS, Hasting A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798CrossRefGoogle Scholar
  29. Otis DL, Burnham KP, Anderson DR (1978) Statistical inference for capture data on closed animal populations. Wildl Monogr 62:1–135Google Scholar
  30. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958CrossRefGoogle Scholar
  31. Pernetta JC (1977) Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Can J Zool 55:1612–1619CrossRefGoogle Scholar
  32. Reed RN, Shine R, Shetty S, Cogger H (2002) Sea kraits (Squamata: Laticauda spp.) as a useful bioassay for assessing local diversity of eels (Muraenidae, Congridae) in the western Pacific Ocean. Copeia 2002:1098–1101CrossRefGoogle Scholar
  33. Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433–446CrossRefGoogle Scholar
  34. Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284CrossRefGoogle Scholar
  35. Rogers CS (1990) Responses to coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202CrossRefGoogle Scholar
  36. Saint Girons H (1964) Notes sur l’écologie et la structure des populations des Laticaudinae (Serpentes : Hydrophiidae) en Nouvelle-Calédonie. La Terre et la Vie 111:185–214Google Scholar
  37. Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57:289–304CrossRefGoogle Scholar
  38. Sheppard CRC (2003) Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425:294–297CrossRefGoogle Scholar
  39. Shetty S, Shine R (2002a) Philopatry and homing behavior of sea snakes (Laticauda colubrina) from two adjacent islands in Fiji. Cons Biol 16:1422–1426CrossRefGoogle Scholar
  40. Shetty S, Shine R (2002b) Sexual divergence in diets and morphology in Fijian sea snakes, Laticauda colubrina (Laticaudidae). Aust Ecol 27:77–84CrossRefGoogle Scholar
  41. Shetty S, Shine R (2002c) Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian island. Copeia 2002:77–85CrossRefGoogle Scholar
  42. Shine R, Sun L (2003) Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Funct Ecol 17:340–348CrossRefGoogle Scholar
  43. Shine R, Reed RN, Shetty S, LeMaster M, Mason RT (2002) Reproductive isolating mechanisms between two sympatric sibling species of sea-snakes. Evolution 56:1655–1662CrossRefGoogle Scholar
  44. Walker DI, Ormond RFG (1982) Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar Poll Bull 13:21–25CrossRefGoogle Scholar
  45. Willis TJ (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • I. Ineich
    • 1
  • X. Bonnet
    • 2
    • 3
    Email author
  • F. Brischoux
    • 2
    • 4
  • M. Kulbicki
    • 5
  • B. Séret
    • 6
  • R. Shine
    • 3
  1. 1.Département de Systématique et Evolution, USM 602Muséum national d’Histoire naturelleParis Cedex 05France
  2. 2.Centre d’Etudes Biologiques de Chizé, CNRSVilliers en BoisFrance
  3. 3.Biological Sciences A08University of SydneySydneyAustralia
  4. 4.Université François RabelaisTours Cedex 1France
  5. 5.IRD, c/o EPHEUniversité de PerpignanPerpignanFrance
  6. 6.Département Systématique et Evolution-Taxonomie & CollectionsMuséum national d’Histoire naturelleParis Cedex 05France

Personalised recommendations