Marine Biology

, Volume 151, Issue 2, pp 577–594 | Cite as

Site- and species-specific distribution patterns of molluscs at five intertidal soft-sediment areas in northwest Europe during a single winter

  • Pierrick BocherEmail author
  • Theunis Piersma
  • Anne Dekinga
  • Casper Kraan
  • Michael G. Yates
  • Thierry Guyot
  • Eelke O. Folmer
  • Gilles Radenac
Research Article


In this study we aim to provide a basic description and comparison of the spatial distribution and population structure of the common intertidal mollusc species, sampled within a single winter along a latitudinal gradient of different soft-sediment areas spanning 8° of latitude (46°–54°N) and 900 km of distance in northwest Europe. Sediment samples were collected from December 2003 to early March 2004 in the Wadden Sea (The Netherlands), the Wash (United Kingdom), Mont Saint–Michel Bay (France) and two bays on the central French Atlantic coast in south of Brittany. Core-sampling over 250 m grids allowed us to cover 3–30 km² at nine separate intertidal subsites, with a grand total of 2,103 points visited. Among the 15 bivalve and 8 gastropod species collected, we focused on the four most common and abundant bivalve species (Cerastoderma edule, Macoma balthica, Scrobiculariaplana and Abra tenuis) that together represented 96% of all collected bivalves, and on the mudsnail Hydrobia ulvae that comprised 99% of all collected gastropods. C. edule and M. balthica were the most widespread bivalves, with higher densities occurring at higher latitudes. S. plana and A. tenuis were more abundant at southern sites, both with a clear preference for muddy sediments. The mudsnail H. ulvae occurred commonly and in comparable densities at all study sites, except in Mont Saint–Michel Bay where it was very rare. Mean sizes of the common molluscs were highly variable between sites, without clear north–south gradients. The mollusc distribution patterns at the five intertidal areas and nine subsites were predominantly site-specific. Mollusc community composition showed greater similarity within than between the regions north and south of the Brittany peninsula.


Bivalve Tidal Amplitude Intertidal Area Bivalve Species Intertidal Flat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The sampling of the nine subsites was only possible with the precious help of numerous people from three countries. We would like to thank K. van der Star, H. de Vries, G. Ogereau, A. Garbutt, C. Colas, G. Doresmus, A. Koolhaas, E. Reveillac, H. Guerin, D. Le Guerrier, V. Huet, C. Cooper, J. Pigeot, B. Le Breton, S. Le Dréan Quenech’du, G. Kerleguer, P. Ory, J. M. Guarini, J.-P. Bocher, G. Bocher, P. Luttikhuizen, P. Richard, Y. Coulomb, M. Beaufils, S. Haye and E. Parlier. Staff of ONCFS provided additional help: H. Audebert, M. Claise, T. Dodin, A. François, D. Gaillard, Y. Limouzin, P. Mallassage, J. Marquis, J. Moreau and G. Puaud. We thank A. Boissinot, F. Gaillardon, E. Guerlet, F. Pouget for their help in producing the distribution maps. Logistic help, including the provision of field accommodation was generously arranged or provided by P. L. Ireland, P. Atkinson, N. Alligner, N. Clark, E. Feunteun, P. Miramand, M. Poisbleau and A. Radureau. We are especially grateful to the managers of the nature reserves in Aiguillon Bay, F. Meunier for the Ligue pour la Protection des Oiseaux (LPO) and E. Joyeux for the Office National de la Chasse et de la Faune Sauvage (ONCFS), as well as the managers of Moeze–Oléron, N. Boileau and F. Corre and P. Delaporte of LPO. Financial support was received from the Conseil Général de Charente-Maritime, the Programme Environnement, Vie et Société CNRS Micropolluants Marennes–Oléron, Zone Atelier du Mont Saint-Michel (PEVS CNRS), Réserve Naturelle de la Baie de l’Aiguillon (LPO) and the van Gogh program administered by the Netherlands Organisation for Scientific Research (NWO). We thank P. J. Hayward and J. S. Ryland for their kind permission to use their drawings.


  1. Abrahamse J, Joenje W, van Leeuwen-Seelt N (eds) (1976) Waddenzee, natuurgebied van Nederland, Duitsland en Denemarken. Landelijke Vereniging tot Behoud van de Waddenzee, HarlingenGoogle Scholar
  2. Andrew NL, Mapstone BD (1987) Sampling and the description of spatial pattern in marine ecology. Ann Rev Oceanogr Mar Biol 25:39–90Google Scholar
  3. Armonies W, Reise K (2003) Empty habitat in coastal sediments for populations of macrozoobenthos. Helgol Mar Res 56:279–287Google Scholar
  4. Azouzi L, Bourget E, Borcard D (2002) Spatial variation in the intertidal bivalve Macoma balthica: biotic variables in relation to density and abiotic factors. Mar Ecol Prog Ser 234:159–170CrossRefGoogle Scholar
  5. Bachelet G (1979) Les peuplements macrobenthiques de l’estuaire de la Gironde: évolution annuelle des paramètres démographiques. J Rech Ocean 4:1–13Google Scholar
  6. Bachelet G (1980) Growth and recruitment of the tellinid bivalve Macoma balthica at the southern limit of its geographical distribution, the Gironde Estuary (SW France). Mar Biol 59:105–117CrossRefGoogle Scholar
  7. Bazaïri H, Bayed A, Glémarec M, Hily C (2003) Spatial organisation of macrozoobenthic communities in response to environmental factors in a coastal lagoon of the NW African coast (Merja Zerga, Morocco). Oceanol Acta 26:457–471CrossRefGoogle Scholar
  8. Barnes RSK (1981) Behavioural activities and ecological strategies in the intertidal gastropod Hydrobia ulvae. In: Jones NV, Wolff WJ (eds) Feeding and survival strategies of estuarine organisms. Plenum Press, New York, pp 79–90CrossRefGoogle Scholar
  9. Battley PF, Piersma T (2005) Adaptive interplay between feeding ecology and features of the digestive tract in birds. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, Enfield, pp 201–228Google Scholar
  10. van der Bergh GD, Boer W, de Haas H, van Weering TCE, van Wijhe R (2003) Shallow marine tsumani deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Kratatau eruption. Mar Geol 197:13–34CrossRefGoogle Scholar
  11. Bertness MD (ed) (1999) The ecology of Atlantic Shorelines. Sinauer, SunderlandGoogle Scholar
  12. Beukema JJ, Knol E, Cadée GC (1985) Effects of temperature on the length of the annual growing season in the tellinid bivalve Macoma balthica (L.) living on tidal flats in the Dutch Wadden Sea. J Exp Mar Biol Ecol 90:129–144CrossRefGoogle Scholar
  13. Beukema JJ, Dekker R, Essink K, Michaelis H (2001) Synchronized reproductive success of the main bilvalve species in the Wadden Sea: causes and consequences. Mar Ecol Prog Ser 211:143–155CrossRefGoogle Scholar
  14. Blanchard GF, Guarini JM, Provost L, Richard P, Sauriau PG (2000) Measurement of ingestion rate of Hydrobia ulvae (Pennant) on intertidal epipelic microalgae: the effect of mud snail density. J Exp Mar Biol Ecol 225:247–260CrossRefGoogle Scholar
  15. Carvalho S, Moura A, Gaspar MB, Pereira P, Cancela da Fonseca L, Falcão M, Drago T, Leitão F, Regala J (2005) Spatial and interannual variability of the macrobenthic communities within a coastal lagoon (Óbidos lagoon) and its relationship with environmental parameters. Acta Oecol 27:143–159CrossRefGoogle Scholar
  16. Davidson NC, d’A Laffoley D, Doody JP, Way LS, Gordon J, Key R, Pienkowski MW, Mitchell R, Duff KL (1991) Nature conservation and estuaries in Great Britain. Nature Conservancy Council, PeterboroughGoogle Scholar
  17. Dekker R, Beukema JJ (1993) Dynamics and growth of a bivalve, Abra tenuis, at the northern edge of its distribution. J Mar Biol Ass UK 73:497–511CrossRefGoogle Scholar
  18. Dekker R, Beukema JJ (1999) Relations of summer and winter temperatures with dynamics and growth of two bivalves, Tellina tenuis and Abra tenuis, on the northern edge of their intertidal distribution. Neth J Sea Res 42:207–220CrossRefGoogle Scholar
  19. Drent J (2004) Life history variation of a marine bivalve (Macoma balthica) in a changing world. Ph.D. Thesis, University of GroningenGoogle Scholar
  20. Drent J, Luttikhuizen PC, Piersma T (2004) Morphological dynamics in the foraging apparatus of a deposit feeding marine bivalve: phenotypic plasticity and heritable effects. Funct Ecol 18:349–356CrossRefGoogle Scholar
  21. Durell SEA le V dit, Goss-Custard JD, McGrorty S, West AD, Clarke RT, Stillman RA (2005) A strategy for baseline monitoring of estuary Special Protection Areas. Biol Conserv 121:289–301CrossRefGoogle Scholar
  22. Flach EC (2003) The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft-bottom areas on the Swedish west coast. Neth J Sea Res 49:59–67CrossRefGoogle Scholar
  23. Gibbs PE (1984) The population cycle of the bivalve Abra tenuis and its mode of reproduction. J Mar Biol Ass UK 64:791–800CrossRefGoogle Scholar
  24. van Gils JA, de Rooij SR, van Belle J, van der Meer J, Dekinga A, Piersma T, Drent R (2005) Digestive bottleneck affects foraging decisions in red knots (Calidris canutus). I. Prey choice. J Anim Ecol 74:105–119CrossRefGoogle Scholar
  25. Gosling E (ed) (2003) Bivalve molluscs: biology, ecology and culture. Blackwell, OxfordGoogle Scholar
  26. Guillou J, Tartu C (1994) Post-larval and juvenile mortality in a population of the edible cockle Cerastoderma edule (L.) from northern Brittany. Neth J Sea Res 33:103–111CrossRefGoogle Scholar
  27. Hautbois AG, Guarini JM, Richard P, Hemon A, Arotcharen E, Blanchard GF (2004a) Differences in spatial structures between juveniles and adults of the gastropod Hydrobia ulvae on an intertidal mudflat (Marennes–Oléron Bay, France) potentially affect estimates of local demographic processes. Neth J Sea Res 51:63–68CrossRefGoogle Scholar
  28. Hautbois AG, Guarini JM, Richard P, Blanchard GF, Sauriau PG (2004b) Spatio-temporal differentiation in the population structure of Hydrobia ulvae on an intertidal mudflat (Marennes–Oléron Bay, France). J Mar Biol Ass UK 82:605–614CrossRefGoogle Scholar
  29. Hautbois AG, Guarini JM, Richard P, Fichet D, Radenac G, Blanchard G (2005) Ingestion rate of the deposit-feeder Hydrobia ulvae (Gastropoda) on epipelic diatoms: effect of cell size and algal biomass. J Exp Mar Biol Ecol 317:1–12CrossRefGoogle Scholar
  30. Hayward PJ, Ryland JS (eds) (1990) The marine fauna of the British Isles and the North-West Europe, vol 2. Clarendon Press, OxfordGoogle Scholar
  31. Hughes RN (1969a) Population dynamics of the bivalve Scrobicularia plana (da Costa) on an intertidal mud-flat in North Wales. J Anim Ecol 39:333–356CrossRefGoogle Scholar
  32. Hughes RN (1969b) A study of feeding in Scrobicularia plana. J Mar Biol Ass UK 49:805–823CrossRefGoogle Scholar
  33. Hummel H (1985) Food intake and growth in Macoma balthica (Mollusca) in the Laboratory. Neth J Sea Res 19:77–83CrossRefGoogle Scholar
  34. Hummel H, Bogaards RH, Amiard-Triquet C, Bachelet G, Desprez M, Marchand J, Rybarczyk H, Sylvand B, de Wit Y, de Wold L (1995) Uniform variation in genetic traits of a marine bivalve related to starvation, pollution and geographic clines. J Exp Mar Biol Ecol 191:133–150CrossRefGoogle Scholar
  35. Hummel H, Bogaards R, Bek T, Polishchuk L, Sokolov K, Amiard-Triquet C, Bachelet G, Desprez M, Naumov A, Strelkov P, Dahle S, Denisenko S, Gantsevich M, de Wolf L (1998) Growth in the bivalve Macoma balthica from its northern to its southern distribution limit: a discontinuity in North Europe because of genetics adaptations in Arctic populations? Comp Biochem Physiol A 120:133–141CrossRefGoogle Scholar
  36. Huxham M, Richards M (2003) Can postlarval bivalves select sediment type during settlement? A field test with Macoma balthica (L.) and Cerastoderma edule (L.). J of Exp Mar Biol Ecol 288:279–293CrossRefGoogle Scholar
  37. Jensen KT (1992) Dynamics and growth of cockle, Cerastoderma edule on an intertidal mud-flat in the Danish Wadden Sea: effects of submersion time and density. Neth J Sea Res 28:335–345CrossRefGoogle Scholar
  38. van de Kam J, Ens BJ, Piersma T, Zwarts L (2004) Shorebirds: an illustrated behavioural ecology. KNNV Publishers, UtrechtGoogle Scholar
  39. Kammermans P (1993) Food limitation in cockles (Cerastoderma edule (L.)): influences of location on tidal flat of nearby presence of mussel beds. Neth J Sea Res 31(1):71–81CrossRefGoogle Scholar
  40. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  41. Luttikhuizen PC, Drent J, van Delden W, Piersma T (2003a) Spatially structured genetic variation in a broadcast spawning bivalve: quantitative versus molecular traits. J Evol Biol 16:260–272CrossRefGoogle Scholar
  42. Luttikhuizen PC, Drent J, Baker AJ (2003b) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229CrossRefGoogle Scholar
  43. Meziane T, Retiere C (2001) Role of biotic interactions on seasonal migrations of the macrozoobenthos living in the upper tidal-flat of the Mont-Saint-Michel bay, France. Oceano Act 24:569–575CrossRefGoogle Scholar
  44. de Montaudouin X (1996) Factors involved in growth plasticity of cockles Cerastoderma edule (L.) identified by field survey and transplant experiments. Neth J Sea Res 36:251–265CrossRefGoogle Scholar
  45. de Montaudouin X, Sauriau PG (2000) Contribution to a synopsis of marine species richness in the Pertuis Charentais Sea with new insights in the soft bottom macrofauna of the Marennes–Oléron Bay. Cah Biol Mar 41:181–222Google Scholar
  46. Piersma T (1987) Production by intertidal benthic animals and limits to their predation by shorebirds: a heuristic model. Mar Ecol Prog Ser 38:187–196CrossRefGoogle Scholar
  47. Piersma T, Beukema JJ (eds) (1993) Tropic interactions between shorebirds and their invertebrate prey. Neth J Sea Res 31:299–512CrossRefGoogle Scholar
  48. Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf P, Battley PF, Wiersma P (1993a) Scale and intensity of intertidal habitat use by knots Calidris canutus in the western Wadden Sea in relation to food, friends and foes. Neth J Sea Res 31:331–357CrossRefGoogle Scholar
  49. Piersma T, de Goeij P, Tulp I (1993b) An evaluation of intertidal feeding habitats from a shorebird perspective: towards comparisons between temperate and tropical mudflats. Neth J Sea Res 31:503–512CrossRefGoogle Scholar
  50. Piersma T, Verkuil Y, Tulp I (1994) Resource for long-distance migration of knots Calidris canutus islandica and C. c. canutus: how broad is the temporal exploitation window of benthic prey in the western and eastern Wadden Sea? Oikos 71:393–407CrossRefGoogle Scholar
  51. Piersma T, van Aelst R, Kurk K, Berkhoudt H, Maas LRM (1998) A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? Proc R Soc Lond B 265:1377–1383CrossRefGoogle Scholar
  52. Piersma T, Koolhaas A, Dekinga A, Beukema JJ, Dekker R, Essink K (2001) Long-term indirect effects of mechanical cockle-dredging on intertidal bivalve stocks in the Wadden Sea. J Appl Ecol 38:976–990CrossRefGoogle Scholar
  53. Piersma T, Rogers DI, González PM, Zwarts L, Niles LJ, de Lima Serrano do Nascimento I, Minton CDT, Baker AJ (2005) Fuel storage rates before northward flights in red knots world-wide: facing the severest ecological constraint in tropical intertidal environments? In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, pp 262–273Google Scholar
  54. Poulton VK, Lovorn JR, Takekawa JY (2004) Spatial and overwinter changes in clam populations of San Pablo Bay, a semiarid estuary with highly variable freshwater inflow. Estuar Coast Shelf Sci 59:459–473CrossRefGoogle Scholar
  55. Raffaelli D (1996) Intertidal ecology. Chapman & Hall, LondonCrossRefGoogle Scholar
  56. Ramon M. (1996) Relationships between the bivalves Mytilus edulis L. and Cerastoderma edule (L.) in a soft bottom environment: an example of interaction at small spatial scale. J Exp Mar Biol Ecol 204:179–194CrossRefGoogle Scholar
  57. Reise K (1985) Tidal flat ecology. An experimental approach to species interactions. Springer, Berlin Heidelberg New York CrossRefGoogle Scholar
  58. Reise K (ed) (2001) Ecological comparisons of sedimentary shores. Springer Berlin Heidelberg New YorkGoogle Scholar
  59. Sauriau P-G, Mouret V, Rincé J-P (1989) Organisation trophique de la malacofaune benthique non cultivée du bassin ostréicole de Marennes–Oléron. Oceanol Acta 12:193–204Google Scholar
  60. Smit CJ, Piersma T (1989) Numbers, midwinter distribution, and migration of wader populations using the East Atlantic flyway. In: Boyd H, Pirot J-Y (eds) Flyways and reserve networks for water birds. International Waterfowl and Wetland Research Bureau, Slimbridge, pp 24–63Google Scholar
  61. Sola JC (1996) Population dynamics, reproduction, growth and secondary production of the mud-snail Hydrobia ulvae (Pennant). J Exp Mar Biol Ecol 205:49–62CrossRefGoogle Scholar
  62. Sola JC (1997) Reproduction, population dynamics, growth and production of Scrobicularia plana da Costa (Pelecypoda) in the Bidasoa Estuary, Spain. Neth J Aquat Ecol 30:283–296CrossRefGoogle Scholar
  63. Stroud DA, Davidson NC, West R, Scott DA, Haanstra L, Thorup O, Ganter B, Delany S (2004) Status of migratory wader populations in Africa and Western Eurasia in the 1990s. Int Wader Stud 15:1–259Google Scholar
  64. Thorin S, Radureau A, Feunteun E, Lefeuvre JC (2001) Preliminary results on a high east–west gradient in the macrozoobenthic community structure of the macrotidal Mont Saint–Michel Bay. Cont Shelf Res 21:2167–2183CrossRefGoogle Scholar
  65. Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115CrossRefGoogle Scholar
  66. Urrutia MB, Navarro E, Ibarrola I, Iglesias JIP (2001) Preingestive selection processes in the cockle Cerastoderma edule: mucus production related to rejection of pseudofaeces. Mar Ecol Prog Ser 209:177–187CrossRefGoogle Scholar
  67. Vader WJM (1964) A preliminary investigation into the reactions of the infauna of the tidal flats to tidal fluctuations in water level. Neth J Sea Res 2:189–222CrossRefGoogle Scholar
  68. Verdelhos T, Neto JM, Marques JC, Pardal MA (2005) The effect of eutrophication abatement on the bivalve Scrobicularia plana. Estuar Coast Shelf Sci 63:261–268CrossRefGoogle Scholar
  69. Verger F (2005) Marais et estuaires du littoral français. Belin, ParisGoogle Scholar
  70. Vincent B, Joly D, Harvey M (1994) Spatial variation in growth of the bivalve Macoma balthica (L.) on a tidal flat: effects of environmental factors and intraspecific competition. J Exp Mar Biol Ecol 181:223–238CrossRefGoogle Scholar
  71. Wolff WJ (ed) (1983) Ecology of the Wadden Sea. Balkema, RotterdamGoogle Scholar
  72. Yates MG, Goss-Custard JD, McGrorty S, Lakhani KH, Durell SEA le V dit, Clarke RT, Rispin WE, Moyi I, Yates T, Plant RA, Frost AJ (1993a) Sediment characteristics, invertebrate densities and shorebird densities on the inner banks of the Wash. J Appl Ecol 30:599–614CrossRefGoogle Scholar
  73. Yates MG, Jones MG, McGrorty S, Goss-Custard JD (1993b) The use of Satellite Imagery to determine the distribution of intertidal surface sediments of The Wash, England. Estuar Coast Shelf Sci 36:333–344CrossRefGoogle Scholar
  74. Ysebaert T, Meire P, Herman PMJ, Verbeek H (2002) Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar Ecol Prog Ser 225:79–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pierrick Bocher
    • 1
    • 2
    Email author
  • Theunis Piersma
    • 2
    • 3
  • Anne Dekinga
    • 2
  • Casper Kraan
    • 2
  • Michael G. Yates
    • 4
  • Thierry Guyot
    • 1
  • Eelke O. Folmer
    • 3
  • Gilles Radenac
    • 1
  1. 1.Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés (CRELA), UMR 6217, Pôle scienceCNRS-IFREMER-Université de la RochelleLa RochelleFrance
  2. 2.Department of Marine Ecology and EvolutionRoyal Netherlands Institute for Sea Research (NIOZ)Den BurgThe Netherlands
  3. 3.Animal Ecology Group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenHarenThe Netherlands
  4. 4.Centre for Ecology and Hydrology - Monks WoodCambridgeshireUK

Personalised recommendations