Marine Biology

, Volume 151, Issue 2, pp 537–552

Microalgal communities epibiontic on the marine hydroid Eudendrium racemosum in the Ligurian Sea during an annual cycle

  • Tiziana Romagnoli
  • Giorgio Bavestrello
  • Emellina M. Cucchiari
  • Mario De Stefano
  • Cristina G. Di Camillo
  • Chiara Pennesi
  • Stefania Puce
  • Cecilia Totti
Research Article

Abstract

The microalgal community associated with Eudendrium racemosum, a marine hydroid widely distributed in the Mediterranean Sea, was studied during an annual cycle, at monthly frequency, in a coastal station of the Ligurian Sea. Microalgae were represented mainly by diatoms, which exhibited higher abundance and biomass values between autumn and spring (max 46,752 cells mm−2 and 1.94 μg C mm−2, respectively), while during summer a significant decrease was observed (min 917 cells mm−2 and 0.013 μg C mm−2). High levels of abundance of filamentous cyanobacteria were observed in summer. Spatial distribution of epibiontic microalgae showed a markedly increasing gradient from the basal to the apical part of hydroid colonies. Considering the growth forms of diatom communities, motile diatoms (mainly small naviculoid taxa) were the most abundant in all the periods. Adnate (Amphora and Cocconeis spp.) were distributed mainly in the basal and central part of hydroid colonies and showed two peaks (autumn and summer). Erect forms (mainly Tabularia tabulata, Licmophora spp., Cyclophora tenuis) were mainly distributed in the apical part of the colonies and showed their maximum densities in spring–summer. Tube-dwelling (Berkeleya rutilans, Parlibellus sp.) were observed at low densities throughout the study period, without any significant temporal or spatial variability. Comparing the microalgal communities on marine hydroid to those grown on mimic substrata placed in the sampling station during summer, significantly higher values of abundance were observed in the hydroid, suggesting that microalgae may benefit from the polyp catabolites. This fact was particularly evident for the adnate diatoms, whose temporal trend paralleled the cycle of hydroid host.

References

  1. Ács É, Borsodi AK, Makk J, Molnár P, Mózes A, Rusznydk A, Reskóné MN, Kiss KT (2003) Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary. Hydrobiologia 506–509:549–557Google Scholar
  2. Admiraal W, Peletier H, Zomer H (1982) Observation and experiments on the population dynamics of epipelic diatoms from an estuarine mudflat. Estuar Coast Shelf Sci 14:471–487Google Scholar
  3. Albay M, Akcaalan R (2003) Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia 506–509:531–540Google Scholar
  4. Barranguet C, Herman PMJ, Sinke JJ (1997) Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J Sea Res 38:59–70CrossRefGoogle Scholar
  5. Bavestrello G, Puce S, Cerrano C, Zocchi E, Boero N (2006) The problem of seasonality of benthic hydroids in temperate waters. Chem Ecol 22 (Suppl 1):197–205CrossRefGoogle Scholar
  6. Bodeanu N (1987–1988) Structure et dynamique de l’algoflore unicellulaire dans les eaux du littoral romain de la mer Noire. Cerc mar IRCM 20–21:19–250Google Scholar
  7. Bozzano R, Sparnocchia S, Picco P, Cappelletti A, Schiano ME, Cappa C (2004) Mediterranean warming: analysis of sea temperature time series from the buoy ODAS Italia 1. Rapport du 37e Congrès de la CIESM, Barcellona (Spagna), p 87Google Scholar
  8. Brandini FP, da Silva ET, Pellizzari FM, Fonseca ALO, Fernandes LF (2001) Production and biomass accumulation of periphytic diatoms growing on glass slides during a 1-year cycle in a subtropical estuarine environment (Bay of Paraguaná, southern Brazil). Mar Biol 138:163–171CrossRefGoogle Scholar
  9. Burkholder JM, Wetzel RG, Klomparens KL (1990) Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Appl Environ Microb 56(9):2882–2890Google Scholar
  10. Busse S (2002) Benthic diatoms in the Gulf of Bothnia. Community analysis and diversity. Acta Universitatis Upsaliensis, Uppsala, pp 30Google Scholar
  11. Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A, Sarà M, Totti C (2000) Diatom invasion in the antarctic hexactinellid sponge Scolymastra joubini. Polar Biol 23:441–444CrossRefGoogle Scholar
  12. Cerrano C, Calcinai B, Cucchiari E, Di Camillo C, Nigro M, Regoli F, Sarà A, Schiaparelli S, Totti C, Bavestrello G (2004a) Are diatoms a food source for Antarctic sponges? Chem Ecol 20(1):57–64Google Scholar
  13. Cerrano C, Calcinai B, Cucchiari E, Di Camillo C, Totti C, Bavestrello G (2004b) The diversity of relationships between Antarctic sponges and diatoms: the case of Mycale acerata (Porifera, Demospongiae). Polar Biol 27(4):231–237CrossRefGoogle Scholar
  14. Cognie B, Barillé L (1999) Does bivalve mucus favour the growth of their main food source, microalgae? Oceanol Acta 22(4):441–450CrossRefGoogle Scholar
  15. Comte K, Fayolle S, Roux M (2005) Quantitative and qualitative variability of epiphytic algae on one Apiaceae (Apium nodiflorum L.) in a karstic river (Southeast of France). Hydrobiologia 543:37–53CrossRefGoogle Scholar
  16. Delgado M (1989) Abundance and distribution of microphytobenthos in the bays of Ebro delta (Spain). Estuar Coast Shelf Sci 29:183–194CrossRefGoogle Scholar
  17. Delgado M, De Jonge VN, Peletier H (1991) Experiments on resuspension of natural microphytobenthos populations. Mar Biol 108:321–328CrossRefGoogle Scholar
  18. DeNicola DM, McIntire CD (1990) Effects of substrate relief on the distribution of periphyton in laboratory streams. I. Hydrology. J Phycol 26:624–633Google Scholar
  19. Di Camillo C, Puce S, Romagnoli T, Tazioli S, Totti C, Bavestrello G (2005) Relationships between benthic diatoms and hydrozoans (Cnidaria). J Mar Biol Ass UK 85:1373–1380CrossRefGoogle Scholar
  20. Eminson DF, Moss B (1980) The composition and ecology of periphyton communities in freshwaters. I. The influence of host type and external environment on community composition. Br Phycol J 15:429–446Google Scholar
  21. Franco C (2004) Colonizzazione di diatomee epilitiche su differenti substrati rocciosi. Thesis, University of AnconaGoogle Scholar
  22. Galanti G, Romo S (1997) Epiphyton biomass on the floating leaved water chestnut (Trapa natans) and its importance for the carbon balance in the eutrophic Lake Candia (N. Italy). Mem Ist Ital Idrobiol 56:95–111Google Scholar
  23. Gillan DC, Cadée GC (2000) Iron-encrusted diatoms and bacteria epibiotic on Hydrobia ulvae (Gastropoda: Prosobranchia). J Sea Res 43:83–91CrossRefGoogle Scholar
  24. Goffart A, Hecq JE, Legendre L (2002) Changes in the development of the winter-spring phytoplankton bloom in the Bay of Calvi (NW Mediterranean) over the last two decades: a response to changing climate? Mar Ecol Prog Ser 236:45–60Google Scholar
  25. Goldsborough LG, Hickman M (1991) A comparison of periphytic algal biomass and community structure on Scirpus validus and on a morphologically similar artificial substratum. J Phycol 27:196–206CrossRefGoogle Scholar
  26. Hameed HA (2003) The colonization of periphytic diatom species on artificial substrates in the Ashar canal, Basrah, Iraq. Limnologica 33:54–61Google Scholar
  27. Hamilton PB, Duthie HC (1984) Periphyton colonization of rock surfaces in a boreal forest stream studied by scanning electron microscopy and track autoradiography. J Phycol 20:525–532CrossRefGoogle Scholar
  28. Hamilton PB, Poulin M, Yang JR (1997) A new diatom genus Porannulus (Bacillariophyta), associated with marine sponges around King George Island, South Shetland Islands, Antarctica. Diat Res 12:229–242Google Scholar
  29. Hasle GR, Syvertsen EE (1997) Marine diatoms. In: Tomas CR (eds) Identifying marine phytoplankton. Academic Press, San Diego, CA, pp 5–385Google Scholar
  30. Hillebrand H, Worm B, Lotze HK (2000) Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Mar Ecol Prog Ser 204:27–38Google Scholar
  31. Hoagland KD (1983) Short-term standing crop and diversity of periphytic diatoms in a eutrophic reservoir. J Phycol 19:30–38CrossRefGoogle Scholar
  32. Hudon C, Bourget E (1981) Initial colonization of artificial substrate: community development and structure studied by scanning electron microscopy. Can J Fish Aquat Sci 38:1371–1384Google Scholar
  33. Hudon C, Legendre P (1987) The ecological implications of growth forms in epibenthic diatoms. J Phycol 23:434–441Google Scholar
  34. Jones JI, Moss B, Eaton JW, Young JO (2000) Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshw Biol 43:591–604Google Scholar
  35. de Jonge VN, Colijn F (1994) Dynamics of microphytobenthos biomass in the Ems Estuary. Mar Ecol Prog Ser 104:185–196CrossRefGoogle Scholar
  36. Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies for cyanobacterial community. Limnol Oceanogr 28(6):1075–1093Google Scholar
  37. Kahlert M, Hasselrot AT, Hillebrand H, Kurt P (2002) Spatial and temporal variation in the biomass and nutrient status of epilithic algae in Lake Erken, Sweden. Freshw Biol 47:1191–1215CrossRefGoogle Scholar
  38. Kusakabe A (1988) Ecological study on epiphytic algae in Lake Biwa. In: L Biwa Research Institute. Lake Biwa Study Monographs 4:1–61Google Scholar
  39. Lewis RJ, Johnson LM, Hoagland KD (2002) Effects of cell density, temperature, and light intensity on growth and stalk production in the biofouling diatom Achnanthes longipes (Bacillariophyceae). J Phycol 38:1125–1131CrossRefGoogle Scholar
  40. Mac Intyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the secret garden of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19(2A):186–201CrossRefGoogle Scholar
  41. Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: John DM, Hawkins SL, Price JH (eds) Plant-animal interactions in the Marine Benthos, Systematic Association Special vol 46, Clarendon Press, Oxford, pp165–187Google Scholar
  42. Michelutti N, Holthman AJ, Douglas MSV, Smol JP (2003) Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian arctic. J Phycol 39:465–480CrossRefGoogle Scholar
  43. Moncreiff CA, Sullivan MJ, Daehnick AE (1992) Primary production dynamics in seagrass beds of Mississipi Sound: the contributions of seagrass, epiphytic algae, sand microflora, and phytoplankton. Mar Ecol Prog Ser 87:161–171CrossRefGoogle Scholar
  44. Müller U (1999) The vertical zonation of adpressed diatoms and other epiphytic algae on Phragmites australis. Eur J Phycol 34:487–496CrossRefGoogle Scholar
  45. Nelson TA (1997) Epiphyte-grazer interactions on Zostera marina (Anthophyta: Monocotyledones): effects of density on community function. J Phycol 33:743–752CrossRefGoogle Scholar
  46. O’Reilly CM (2006) Seasonal dynamics of periphyton in a large tropical lake. Hydrobiologia 553:293–301CrossRefGoogle Scholar
  47. Ortega-Morales BO, Santiago-Garcia JL, López-Cortes A (2005) Biomass and taxonomic richness of epilithic cyanobacteria in a tropical intertidal rocky habitat. Bot Mar 48:116–121CrossRefGoogle Scholar
  48. Patil JS, Anil AC (2000) Epibiotic community on the horseshoe crab Tachypleus gigas. Mar Biol 136:699–713CrossRefGoogle Scholar
  49. Peletier H (1996) Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Mar Ecol Prog Ser 137:265–271Google Scholar
  50. Pinckney JL, Micheli F (1998) Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? J Exp Mar Biol Ecol 221:59–70CrossRefGoogle Scholar
  51. Pinckney J, Paerl HW, Fitzpatrick M (1995) Impact of seasonality and nutrients on microbial mat community structure and function. Mar Ecol Prog Ser 123:207–216Google Scholar
  52. Pringle CM (1990) Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71:905–920CrossRefGoogle Scholar
  53. Ricard M (1987) Diatomophycées. In: Sournia A (ed) Atlas du phytoplankton marin, vol 2. Editions du CNRS, ParisGoogle Scholar
  54. Round FE (1971) Benthic marine diatoms. Oceanogr Mar Biol Ann Rev 9:83–139Google Scholar
  55. Round FE (1981) The Ecology of algae. Cambridge University press, CambridgeGoogle Scholar
  56. Round FE, Sloane JF, Ebling FJ, Kitching JA (1961) The ecology of Lough Ine. X. The hydroid Sertularia operculata (L.) and its associated flora and fauna: effects of transference to sheltered water. J Ecol 49:617–629CrossRefGoogle Scholar
  57. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology, morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  58. Ruesink JL (1998) Diatom epiphytes on Odonthalia floccosa: the importance of extent and timing. J Phycol 34:29–38CrossRefGoogle Scholar
  59. Sherwood AR, Sheath RG (1999) Seasonality of macroalgae and epilithic diatoms in spring–fed streams in Texas, USA. Hydrobiologia 390:73–82CrossRefGoogle Scholar
  60. Siqueiros-Beltrones DA, Serviere-Zaragoza E, Argumedo Hernández U (2001) First record of the Diatom Cocconeis notata Petit living inside the hydrotheca of a hydrozoan epiphyte of Macrocystis pyrifera (L.) C. AG. Oceánides 16(2):135–138Google Scholar
  61. Staats N, de Deckere EMGT, de Winder B, Lucas Stal LJ (2001) Spatial patterns of benthic diatoms, carbohydrates and mud on a tidal flat in the Ems-Dollard estuary. Hydrobiologia 448:107–115CrossRefGoogle Scholar
  62. Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12(3):411–418CrossRefGoogle Scholar
  63. Sullivan MJ (1979) Epiphytic diatoms of three seagrass species in Mississippi sound. Bull Mar Sci 29(4):459–464Google Scholar
  64. Sullivan MJ (1981) Community structure of diatoms epiphytic on mangroves and Thalassia in Bimini Harbour, Bahamas. In: Ross R (eds) Proceedings of 6th Diatom Symposium 1980. Recent, Fossil diatoms Budapest. O Koeltz, Königstein pp 385–398Google Scholar
  65. Sullivan MJ (1984) Community structure of epiphytic diatoms from the Gulf Coast of Florida, USA. In: Mann DG (eds) Proceedings of 7th Diatom Simposium 1982, Philadelphia, O Koeltz, Koenigstein, pp 373–384Google Scholar
  66. Sundbäck K, Miles A, Göransson E (2000) Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annul study. Mar Ecol Prog Ser 200:59–76Google Scholar
  67. Tanaka S, Watanabe T (1990) The colonization process of a typical epilithic algal community Homoeothrix janthina-Achnanthes japonica community in a less polluted river in Japan. Jpn J Phycol 38:167–177Google Scholar
  68. Totti C (2003) Influence of the plume of the River Po on the distribution of subtidal microphytobenthos in the northern Adriatic Sea. Bot Mar 46:161–178CrossRefGoogle Scholar
  69. Totti C, De Stefano M, Facca C, Ghirardelli LA (2004) Microphytobenthos. In: Gambi MC, Dappiano M (eds) Mediterranean marine benthos: a manual of methods for its sampling and study. Biol Mar Medit 11(1):247–266Google Scholar
  70. Totti C, Calcinai B, Cerrano C, Di Camillo C, Romagnoli T, Bavestrello G (2005) Diatom selection by the Antarctic sponge Sphaerotylus antarcticus Kirkpatrick, 1908 (Porifera, Demospongiae). J Mar Biol Ass UK 85:795–800CrossRefGoogle Scholar
  71. Tuji A (2000a) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48:75–84CrossRefGoogle Scholar
  72. Tuji A (2000b) The effect of irradiance on the growth of different forms of freshwater diatoms: implications for succession in attached diatom communities. J Phycol 36:656–661CrossRefGoogle Scholar
  73. Underwood GJC, Thomas JD, Baker JH (1992) An experimental investigation of interactions in snail-macrophyte-epiphyte systems. Oecologia 91:587–595CrossRefGoogle Scholar
  74. Welker C, Sdrigotti E, Covelli S, Faganeli J (2002) Microphytobenthos in the Gulf of Trieste (northern Adriatic Sea); relationship with labile sedimentary organic matter and nutrients. Estuar Coastal Shelf Sci 55:259–273CrossRefGoogle Scholar
  75. Wellnitz TA, Ward JV (2000) Herbivory and irradiance shape periphytic architecture in a Swiss alpine stream. Limnol Oceanogr 45(1):64–75CrossRefGoogle Scholar
  76. Whitton BA, Potts M (1982) The biology of Cyanobacteria. In: Carr, Whitton BA (eds) Botanical monographs, vol 19. Blackwell Scientific Publications, London, pp 515–542Google Scholar
  77. Worm B, Sommer U (2000) Rapid direct and indirect effects of a single nutrient pulse in a seaweed-epiphyte-grazer system. Mar Ecol Prog Ser 202:283–288Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Tiziana Romagnoli
    • 1
  • Giorgio Bavestrello
    • 1
  • Emellina M. Cucchiari
    • 1
  • Mario De Stefano
    • 2
  • Cristina G. Di Camillo
    • 1
  • Chiara Pennesi
    • 1
  • Stefania Puce
    • 1
  • Cecilia Totti
    • 1
  1. 1.Università Politecnica delle MarcheAnconaItaly
  2. 2.Università di Napoli NapoliItaly

Personalised recommendations