Advertisement

Marine Biology

, Volume 151, Issue 2, pp 529–535 | Cite as

The systematic position of some boring sponges (Demospongiae, Hadromerida) studied by molecular analysis

  • Marco Barucca
  • Francesca Azzini
  • Giorgio Bavestrello
  • Maria Assunta Biscotti
  • Barbara Calcinai
  • Adriana Canapa
  • Carlo Cerrano
  • Ettore Olmo
Research Article

Abstract

A phylogenetic analysis of some bioeroding sponges of the family Clionaidae (Order Hadromerida) was performed to resolve some taxonomic problems both at the specific and the supraspecific level using the D2 and D3 regions of 28S rDNA. Species belonging to the genera Cliona, Cliothosa, Spheciospongia (fam. Clionaidae) and Diplastrella (fam. Spirastrellidae) from the Mediterranean Sea and Celebes Sea (Indonesia) were analysed. In the phylogenetic tree, the species clustered on two main branches, one comprising Cliona celata, C. rhodensis, C. utricularis, and Cliothosa hancocki, and the other made up of C. viridis, C. nigricans, C. schmidti, C. jullieni, Spheciospongia solida and S. vagabunda. Above the species level, data do not support the separation of the genus Cliothosa from Cliona, while they do support the inclusion of some massive boring species, previously assigned to the genus Spirastrella, in the family Clionaidae. At the species level, data demonstrated the genetic identity of taxa C. viridis and C. nigricans, in spite of their considerable morphological differences. In contrast, the yellow species commonly attributed to C. celata are probably to be considered as a complex of sibling species with a number of distinct taxa present in the Mediterranean. Data also showed the identity of the Mediterranean and Pacific populations of C. schmidti, suggesting the status of a Tethyan relict for this species.

Keywords

Sponge Neighbour Join Allozyme Electrophoresis Boring Sponge Gamma Distribution Shape Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barbieri M, Bavestrello G, Sarà M (1995) Morphological and ecological differences in two electrophoretically detected species of Cliona (Porifera: Demospongiae). Biol J Linn Soc 54:193–200CrossRefGoogle Scholar
  2. Bayer FM (1964) The genus Corallium (Gorgonacea: Scleraxonia) in the Western North Atlantic Ocean. Bull Mar Sci 14:465–478Google Scholar
  3. Bavestrello G, Calcinai B, Cerrano C, Pansini M, Sarà M (1996) The taxonomic status of some Mediterranean clionids (Porifera, Demospongiae) according to morphological and genetic characters. Bull Inst Royal Sci Nat Belgique 66:185–195Google Scholar
  4. Borchiellini C, Chombard C, Lafay B, Boury-Esnault N (2000) Molecular systematics of sponges (Porifera). Hydrobiologia 420:15–27CrossRefGoogle Scholar
  5. Bromley RG, D’Alessandro A (1984) The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of Southern Italy. Riv Ital Pal Strat 90:227–296Google Scholar
  6. Calcinai B, Cerrano C, Sarà M, Bavestrello G (2000) Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Ital J Zool 67:203–219CrossRefGoogle Scholar
  7. Calcinai B, Cerrano C, Bavestrello G (2002) A new species of Scantiletta (Demospongiae, Clionaidae) from the Mediterranean precious red coral with some remarks on the genus. Bull Mar Sci 70:919–926Google Scholar
  8. Calcinai B, Azzini F, Bavestrello G, Iwasaki N, Cerrano C (2004) Redescription of Alectona verticillata (Johnson) (Porifera, Alectonidae) boring into Japanese precious coral. Ital J 71:337–339Google Scholar
  9. DeSalle R, Wray C, Absher R (1994) Computational problems in molecular systematics. In: Schierwater B, Streit B, Wagner GP, Desalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel, pp. 353–370Google Scholar
  10. Giribet G, Wheeler WC (1999) On gaps. Mol Phylogenet Evol 13:132–143PubMedCrossRefGoogle Scholar
  11. Kelly-Borges M, Bergquist PR, Bergquist PL (1991) Phylogenetic relationships within the order Hadromerida (Porifera, Demospongiae, Tetractinomorpha) as indicated by ribosomal RNA Sequence comparisons. Bioch Syst Ecol 19:117–125CrossRefGoogle Scholar
  12. Kuo J, McComb AJ (1989) A treatise on the biology of seagrasses with special reference to the Australian region. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Aquatic plant studies 2. Elsevier, Amsterdam, pp 6–73Google Scholar
  13. Klautau M, Russo CAM, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53(5):1414–1422CrossRefGoogle Scholar
  14. Lazoski C, Solé-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Mar Biol 139(3):421–429CrossRefGoogle Scholar
  15. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93PubMedCrossRefGoogle Scholar
  16. Nichols SA (2005) An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Mol Phylogenet Evol 34(1):81–96PubMedCrossRefGoogle Scholar
  17. Pang RK (1973) The systematics of some Jamaican excavating sponges (Porifera). Postilla Peabody Mus Yale Univ 161:1–75Google Scholar
  18. Phillips A, Janies D, Wheeler W (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol 16:317–330PubMedCrossRefGoogle Scholar
  19. Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301– 319CrossRefGoogle Scholar
  20. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  21. Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501PubMedGoogle Scholar
  22. Rosell D, Uriz MJ (1991) Cliona viridis (Schmidt, 1862) and Cliona nigricans (Schmidt, 1862) (Porifera, Hadromerida): evidence which shows they are the same species. Ophelia 33:45–53Google Scholar
  23. Rosell D, Uriz MJ (1997) Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision. Cladistics 13:349–366CrossRefGoogle Scholar
  24. Rosell D, Uriz MJ (2002) Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org Divers Ecol 2:55–86CrossRefGoogle Scholar
  25. Rützler K (1973) Clionid sponges from the coast of Tunisia. Bull Inst Natl Sci Tech Oceanogr Peche Salammbö 2:623–636Google Scholar
  26. Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contrib Zoo 165:1–32Google Scholar
  27. Rützler K (2002) Family Clionaidae D’Orbigny, 1851. In: Hooper JNA, Soest RWM Van (eds) Sistema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York, pp 173–185Google Scholar
  28. Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Ecol 21:144–162Google Scholar
  29. Schmidt O (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, Leipzig, 88 ppGoogle Scholar
  30. Schönberg CHL (2000) Bioeroding sponges common to the Central Australian Great Barrier Reef: description of three new species, two new records, and additions to two previously described species. Senckenbergiana Marit 30:161–221CrossRefGoogle Scholar
  31. Solé-Cava AM, Klautau M, Boury-Esnault N, Borojevic, Thorpe JP (1991) Genetic evidence for cryptic speciation in allopatric populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Mar Biol. 111:381–386CrossRefGoogle Scholar
  32. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (* and other methods) version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  33. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285PubMedGoogle Scholar
  34. Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lec Math Life Sci 17:57–86Google Scholar
  35. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  36. Topsent E (1900) Etude monographique des spongiaires de France, III Monaxonida (Hadromerida). Arch Zoo Exp Gén 3 Sér 8:1–331Google Scholar
  37. Whitting MF, Carpenter JM, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequence and morphology. Syst Biol 46:1–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marco Barucca
    • 1
  • Francesca Azzini
    • 2
  • Giorgio Bavestrello
    • 3
  • Maria Assunta Biscotti
    • 1
  • Barbara Calcinai
    • 3
  • Adriana Canapa
    • 1
  • Carlo Cerrano
    • 4
  • Ettore Olmo
    • 1
  1. 1.Istituto di Biologia e GeneticaUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Departamento ExpedicionesPharma MarColmenar Viejo, MadridSpain
  3. 3.Dipartimento di Scienze del MareUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Dipartimento per lo studio del Territorio e delle sue RisorseUniversità di GenovaGenoaItaly

Personalised recommendations