Marine Biology

, Volume 150, Issue 6, pp 1431–1440 | Cite as

Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes

  • Kendall D. ClementsEmail author
  • Isabel B. Y. Pasch
  • Damian Moran
  • Susan J. Turner
Research Article


Bacterial diversity in the microbial communities of posterior gut sections of three temperate marine herbivorous fish species from New Zealand was characterised using Amplified Ribosomal DNA Restriction Analysis, and 16S rRNA gene amplification and sequencing methods. The fish were collected in 1999–2000 in the Hauraki Gulf, New Zealand (35°54’–36°24’S, 174°48’–175°25’E). The gastrointestinal bacterial communities of Kyphosus sydneyanus (Günther, 1886) (F. Kyphosidae), Odax pullus (Forster in Bloch and Schneider, 1801) (F. Labridae) and Aplodactylus arctidens Richardson, 1839 (F. Aplodactylidae) were dominated by five clades of bacteria, four of which belong to recognized clostridial clusters. The clone libraries of K. sydneyanus and O. pullus contained sequences from most of these clades, but were dominated by members of clostridial clusters XI and XIVa, respectively. The clone library of A. arctidens was dominated by members of clostridial cluster XIVb and an unassigned cluster containing Eubacterium desmolans and Papillibacter cinnaminovorans. The finding that strains of Firmicutes dominated the gastrointestinal microbial communities of all three fish species is consistent with the results of similar studies on terrestrial vertebrate herbivores. This work thus contributes to the view that gastrointestinal symbionts in some marine herbivorous fishes may play a similar role to those in terrestrial vertebrate herbivores studied to date.


Clone Library Azurea Genus Clostridium Clostridial Cluster Paecilomyces Lilacinus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank: E. Angert, H. Choat, A. Drummond, D. Mountfort, P. Rainey, T. Roberton, D. Saul and three anonymous referees for helpful comments; K. Boxen and C. Millar for help with sequencing; and M. Birch, B. Doak, and L. Zemke-White for help in the field. This study was supported by a Royal Society of New Zealand Marsden Grant to D. Mountfort and K. Clements, a University of Auckland Research Committee grant to K. Clements and S. Turner, and a German Academic Exchange Service (DAAD) scholarship to I. Pasch.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  2. Andreesen JR, Bahl H, Gottschalk G (1989) Introducing the physiology and biochemistry of the genus Clostridium. In: Minton NP, Clarke DJ (eds) Biotechnology Handbook “Clostridia”. Plenum Press, New York, pp 27–62Google Scholar
  3. Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239–241CrossRefGoogle Scholar
  4. Angert ER, Brooks AE, Pace NR (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bact 178:1451–1456CrossRefGoogle Scholar
  5. Bjorndal KA (1997) Fermentation in reptiles and amphibians. In: Mackie RI, White BA (eds) Gastrointestinal Microbiology, Vol. 1 Gastrointestinal ecosystems and fermentations. Chapman and Hall, New York, pp 199–230CrossRefGoogle Scholar
  6. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127CrossRefGoogle Scholar
  7. Caldwell DR, Keeney M, van Soest PJ (1969) Effects of carbon dioxide on growth and maltose fermentation by Bacteroides. J Bacteriol 98:668–676PubMedPubMedCentralGoogle Scholar
  8. Choat JH, Clements KD (1992) Diet in odacid and aplodactylid fishes from Australia and New Zealand. Aust J Mar Freshwat Res 43:1451–1459CrossRefGoogle Scholar
  9. Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Ann Rev Ecol Syst 29:375–403CrossRefGoogle Scholar
  10. Clements KD (1991) Endosymbiotic communities of two herbivorous labroid fishes, the temperate Odax pullus and the tropical Scarus rubroviolaceus. Mar Biol 109:223–229CrossRefGoogle Scholar
  11. Clements KD (1997) Fermentation and gastrointestinal microorganisms in fishes. In: Mackie RI, White BA (eds) Gastrointestinal Microbiology, Vol. 1 Gastrointestinal ecosystems and fermentations. Chapman and Hall, New York, pp 156–198CrossRefGoogle Scholar
  12. Clements KD, Choat JH (1993) Influence of season, ontogeny and tide on the diet of the temperate marine herbivorous fish Odax pullus (Odacidae). Mar Biol 117:213–220CrossRefGoogle Scholar
  13. Clements KD, Choat JH (1995) Fermentation in tropical marine herbivorous fishes. Physiol Zool 68:355–378CrossRefGoogle Scholar
  14. Clements KD, Choat JH (1997) Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar Biol 127:579–586CrossRefGoogle Scholar
  15. Clements KD, Gleeson VP, Slaytor M (1994) Short-chain fatty acid metabolism in temperate marine herbivorous fish. J Comp Physiol B 164:372–377CrossRefGoogle Scholar
  16. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippie H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826CrossRefGoogle Scholar
  17. Defnoun S, Labat M, Ambrosio M, Gacia J-L, Patel BKC (2000) Papillibacter cinnamivorans gen. nov., sp. nov.,a cinnamate-transforming bacterium from ashea cake digester. Int J Syst and Evol Microbiol 50:1221–1228CrossRefGoogle Scholar
  18. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nuc Acid Res 12:387–395CrossRefGoogle Scholar
  19. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141–2146PubMedGoogle Scholar
  20. Fidopiastis PM, Bezdek DJ, Horn MH, Kandel JS (2006) Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae). Mar Biol 148:631–642 DOI 10.1007/s00227-005-0106-2CrossRefGoogle Scholar
  21. Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220CrossRefGoogle Scholar
  22. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345PubMedPubMedCentralGoogle Scholar
  23. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264CrossRefGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  25. Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, De Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123CrossRefGoogle Scholar
  26. Hespell RB, Akin DE, Dehority BA (1997) Bacteria, fungi, and protozoa of the rumen. In:Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal Microbiology, vol. 2, Gastrointestinal microbiology and host interactions. Chapman and Hall, New York, pp 59–141CrossRefGoogle Scholar
  27. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s Manual of Determinative Bacteriology, Ninth Edition. Williams and Wilkins, BaltimoreGoogle Scholar
  28. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242CrossRefGoogle Scholar
  29. Horn MH (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol Annu Rev 27:167–272Google Scholar
  30. Howlett MR, Mountfort DO, Turner KW, Roberton AM (1976) Metabolism and growth yields in Bacteroides ruminicola strain b14. Appl Environ Microbiol 32:274–283PubMedPubMedCentralGoogle Scholar
  31. Leff LG, Dana JR, McArthur JV, Shimkets LJ (1995) Comparison of methods of DNA extraction from stream sediments. Appl Envir Microbiol 61:1141–1143Google Scholar
  32. Luczkovich JJ, Stellwag EJ (1993) Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Mar Biol 116:381–388CrossRefGoogle Scholar
  33. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Envir Microbiol 65:4715–4724Google Scholar
  34. Moran D, Clements KD (2002) Diet and endogenous carbohydrases in the temperate marine herbivorous fish Kyphosus sydneyanus. J Fish Biol 60:1190–1203CrossRefGoogle Scholar
  35. Moran D, Turner SJ, Clements KD (2004) Ontogenetic development of the gastrointestinal microbiota in the marine herbivorous fish Kyphosus sydneyanus. Microb Ecol 49:590–597CrossRefGoogle Scholar
  36. Mountfort DO, Rhodes LL (1991) Anaerobic growth and fermentation characteristics of Paecilomyces -lilacinus isolated from mullet gut. Appl Environ Microbiol 57:1963–1968PubMedPubMedCentralGoogle Scholar
  37. Mountfort DO, Grant WD, Morgan H, Rainey FA, Stackebrandt E (1993) Isolation and characterization of an obligately anaerobic, pectinolytic, member of the genus Eubacterium from mullet gut. Arch Microbiol 159:289–295CrossRefGoogle Scholar
  38. Mountfort DO, Rainey FA, Burghardt J, Stackebrandt E (1994) Clostridium grantii sp. nov., a new obligately anaerobic, alginolytic bacterium isolated from mullet gut. Arch Microbiol 162:173–179CrossRefGoogle Scholar
  39. Mountfort DO, Campbell J, Clements KD (2002) Hindgut fermentation in three species of marine herbivorous fish. Appl Environ Microbiol 68:1374–1380CrossRefGoogle Scholar
  40. Nelson KE (2003) The future of microbial genomics. Environ Microbiol 5:1223–1225CrossRefGoogle Scholar
  41. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract:insights into an unexplored niche. Environ Microbiol 5:1212–1220CrossRefGoogle Scholar
  42. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, Bioinformatics teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GM, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bact 183:4823–4838CrossRefGoogle Scholar
  43. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedPubMedCentralGoogle Scholar
  44. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, LondonGoogle Scholar
  45. Ramirez RF, Dixon BA (2003) Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 227:417–426CrossRefGoogle Scholar
  46. Rimmer DW, Wiebe WJ (1987) Fermentative microbial digestion in herbivorous fishes. J Fish Biol 31:229–236CrossRefGoogle Scholar
  47. Saul DJ, Aislabie JM, Brown CE, Harris LA, Foght J (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155CrossRefGoogle Scholar
  48. Seeto GS, Veivers PC, Clements KD, Slaytor M (1996) Carbohydrate utilization by microbial symbionts in the marine herbivorous fishes Odax cyanomelas and Crinodus lophodon. J Comp Physiol B 165:571–579CrossRefGoogle Scholar
  49. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266CrossRefGoogle Scholar
  50. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001CrossRefGoogle Scholar
  51. Skea GL, Mountfort DO, Clements KD (2005) A quantitative study of gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Comp Biochem Physiol B 140:259–269CrossRefGoogle Scholar
  52. Stevens C, Hume I (1995) Comparative physiology of the vertebrate system, 2nd edn. Cambridge University Press, Cambridge, MassGoogle Scholar
  53. Suau A, Bonnet R, Sutern M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807PubMedPubMedCentralGoogle Scholar
  54. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Envir Microbiol 62:625–630Google Scholar
  55. Swofford D (1999) PAUP* Phylogenetic Analysis using Maximum Parsimony (* and other methods), 4.04 ed. Sinauer Associates, Sunderland, MAGoogle Scholar
  56. Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169CrossRefGoogle Scholar
  57. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multipble sequence alignment aided by qualitiy analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  58. Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca, NYGoogle Scholar
  59. Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163CrossRefGoogle Scholar
  60. Wilson KH (1997) Biota of the human gastrointestinal tract. In Mackie RI, Whie BA, Isaacson RE (eds) Gastrointestinal Microbiology, vol. 2, Gastrointestinal microbiology and host interactions. Chapman and Hall, New York, pp 39–58CrossRefGoogle Scholar
  61. Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microb Rev 21:213–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kendall D. Clements
    • 1
    Email author
  • Isabel B. Y. Pasch
    • 1
  • Damian Moran
    • 1
  • Susan J. Turner
    • 1
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations