Advertisement

Marine Biology

, Volume 151, Issue 3, pp 805–825 | Cite as

Phytoplankton community structure and primary production in small intertidal estuarine-bay ecosystem (eastern English Channel, France)

  • Fabien Jouenne
  • Sébastien Lefebvre
  • Benoît Véron
  • Yvan Lagadeuc
Research Article

Abstract

From May 2002 to October 2003, a fortnightly sampling programme was conducted in a restricted macrotidal ecosystem in the English Channel, the Baie des Veys (France). Three sets of data were obtained: (1) physico-chemical parameters, (2) phytoplankton community structure illustrated by species composition, biovolume and diversity, and (3) primary production and photosynthetic parameters via P versus E curves. The aim of this study was to investigate the temporal variations of primary production and photosynthetic parameters in this bay and to highlight the potential links with phytoplankton community structure. The highest level of daily depth-integrated primary production Pz (0.02–1.43 g C m−2 d−1) and the highest maximum photosynthetic rate PBmax (0.39–8.48 mg C mg chl a−1 h−1) and maximum light utilization coefficient αB [0.002–0.119 mg C mg chl a−1 h−1 (μmol photons m−2 s−1)] were measured from July to September. Species succession was determined based on biomass data obtained from cell density and biovolume measurements. The bay was dominated by 11 diatoms throughout the year. However, a Phaeocystis globosa bloom (up to 25 mg chl a m−3, 2.5 × 106 cells l−1) was observed each year during the spring diatom bloom, but timing and intensity varied interannually. Annual variation of primary production was due to nutrient limitation, light climate and water temperature. The seasonal pattern of microalgal succession, with regular changes in composition, biovolume and diversity, influenced the physico-chemical and biological characteristics of the environment (especially nutrient stocks in the bay) and thus primary production. Consequently, investigation of phytoplankton community structure is important for developing the understanding of ecosystem functioning, as it plays a major role in the dynamics of primary production.

Keywords

Phytoplankton Suspend Particulate Matter Dissolve Inorganic Nitrogen Photosynthetic Parameter Microalgal Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Conseil Régional de Basse-Normandie, the Agence de l’Eau-Seine-Normandie, the Direction Régionale de l’Environnement and the Direction Régionale des Affaires Maritimes through an IFOP grant. The authors wish to thank J.-P. Lehodey, A. Savinelli, J.-P. Desmasures, F. Guyot and P. Hérisson (Centre de Recherche en Environnement Côtier, UCBN, Luc-sur-Mer) for logistical support during cruises; Dr. I. Probert, Dr. P. Claquin, Dr Line Legall, G. James, J. Montepini (UCBN) for help during cruises and biovolume measurements; Dr. P. Barbey for radioactive experiments in the Laboratoire de Manipulation des Radio-Eléments (LAMARE); O. Pierre-Duplessix (IFREMER, Port-en-Bessin) for nutrient measurements; and Dr. J.-C. Brun-Cottan (Laboratoire de Morphodynamique Continentale et Côtière, UCBN) for the loan of CTD probe. Finally, the authors would like to thank Dr. I. Probert for reviewing the English. The experiments comply with the current laws of the country in which the experiments were performed.

References

  1. Agard JBR, Hubbard RH, Griffith JK (1996) The relation between productivity, disturbance and the biodiversity of Caribbean phytoplankton: applicability of Huston’s dynamic equilibrium model. J Exp Mar Biol Ecol 202:1–17CrossRefGoogle Scholar
  2. Alpine AE, Cloern JE (1992) Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol Oceanogr 37:946–955CrossRefGoogle Scholar
  3. Aminot A, Guillaud JF, Andrieux-Loyer F, Kérouel R, Cann P (1998) Apports de nutriments et développement phytoplanctonique en baie de Seine. Oceanol Acta 21:923–935CrossRefGoogle Scholar
  4. Aoki I (2003) Diversity–productivity–stability relationship in freshwater ecosystems: whole-systemic view of all trophic levels. Ecol Res 18:397–404CrossRefGoogle Scholar
  5. Babin M, Morel A, Gagnon R (1994) An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters. Limnol Oceanogr 39:694–702CrossRefGoogle Scholar
  6. Beliaeff B, Gros P, Belin C, Raffin B, Gailhard I, Durbec JP (2001) ‘Phytoplankton events’ in French coastal waters during 1987–1997. Oceanol Acta 24:425–433CrossRefGoogle Scholar
  7. Behrenfeld MJ, Falkowski PG (1997) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42:1479–1491CrossRefGoogle Scholar
  8. Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for variations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25CrossRefGoogle Scholar
  9. Bergquist AM, Carpenter SR, Latino JC (1985) Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol Oceanogr 30:1037–1045CrossRefGoogle Scholar
  10. Brush MJ, Brawley JW, Nixon SW, Kremer JN (2002) Modeling phytoplankton production: problems with the Eppley curve and an empirical alternative Mar. Mar Ecol Prog Ser 238:31–45CrossRefGoogle Scholar
  11. Cameron T (2002) 2002: the year of the ‘diversity-ecosystem function’ debate. Trends Ecol Evol 17:495–496CrossRefGoogle Scholar
  12. Cardinale BJ, Ives AR, Inchausti P (2004) Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104:437–450CrossRefGoogle Scholar
  13. Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448CrossRefGoogle Scholar
  14. Cebrian J, Valiela I (1999) Seasonal patterns in phytoplankton biomass in coastal ecosystems. J Plankton Res 21:429–444CrossRefGoogle Scholar
  15. Chrétiennot-Dinet, MJ, Billard, C, Sournia, A (1990) Atlas du Phytoplancton Marin. Volume III. Chlorarachniophycées, Chlorophycées, Chrysophycées, Cryptophycées, Euglénophycées, Eustigmatophycées, Prasinophycées, Prymnésiophycées, Rhodophycées, Tribophycées. Editions du CNRS, Paris, France, p 261Google Scholar
  16. Cloern JE (1996) Phytoplankton blooms dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay. Calif Rev Geophys 34:127–168CrossRefGoogle Scholar
  17. Costil K, Royer J, Ropert M, Soletchnik P, Mathieu M (2005) Spatio-temporal variations in biological performances and summer mortality of the Pacific oyster Crassostrea gigas in Normandy (France). Helgol Mar Res 59:286–300CrossRefGoogle Scholar
  18. Côté B, Platt T (1983) Day-to-day variations in the spring–summer photosynthetic parameters of coastal marine phytoplankton. Limnol Oceanogr 28:320–344CrossRefGoogle Scholar
  19. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  20. Demers S, Legendre L, Therriault JC (1986) Phytoplankton responses to vertical tidal mixing. In: Bowman, Yentsch, Peterson (eds) Tidal mixing and plankton dynamics. Springer, Berlin Heidelberg New York, pp 1–40Google Scholar
  21. Drebes G (1974) Marines phytoplankton. Georg Thieme Verlag, Stuttgart, p 186Google Scholar
  22. Dürselen CD, Rick HJ (1999) Spatial and temporal distribution of two new phytoplankton diatom species in the German Bight in the period 1988 and 1996. Sarsia 84:367–377CrossRefGoogle Scholar
  23. Escaravage V, Prins TC (2002) Silicate availability, vertical mixing and grazing control of phytoplankton blooms in mesocosms. Hydrobiologia 484:33–48CrossRefGoogle Scholar
  24. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell, Malden Google Scholar
  25. Gailhard I, Durbec JP, Beliaeff B, Sabatier R (2003) Ecologie du phytoplancton sur les côtes françaises: comparaison inter-sites. CR Biol 326:853–863CrossRefGoogle Scholar
  26. Gaxiola-Castro G, Alvarez-Borrego S, Lavin MF, Zirino A, Najera-Martinez S (1999) Spatial variability of the photosynthetic parameters and biomass of the Gulf of California phytoplankton. J Plankton Res 21:231–245CrossRefGoogle Scholar
  27. Geider RJ, MacIntyre HL (2002) Physiology and biochemistry of photosynthesis and algal carbon acquisition. In: Williams PJleB, Thomas DN, Reynolds CS (eds) Phytoplankton productivity. Carbon assimilation in marine and freshwater ecosystems. Blackwell, Oxford pp 44–77Google Scholar
  28. Goosen NK, Kromkamp J, Peene J, Rijswijk P, Breugel P (1999) Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde. J Mar Syst 22:151–171CrossRefGoogle Scholar
  29. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrekopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286(5):1123–1127CrossRefGoogle Scholar
  30. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739CrossRefGoogle Scholar
  31. Ignatiades L, Psarra S, Zervakis V, Pagou K, Souvermezoglou E, Assimakopoulou G, Gotsis-Skretas O (2002) Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J Mar Syst 36:11–28CrossRefGoogle Scholar
  32. Joint I, Pomroy A (1993) Phytoplankton biomass and production in the Southern North Sea. Mar Ecol Prog Ser 99:169–182CrossRefGoogle Scholar
  33. Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2005) Biological and physicochemical factors controlling short-term variability in phytoplankton primary production and photosynthetic parameters in a macrotidal ecosystem (eastern English Channel). Est Coast Shelf Sci 65:421–439CrossRefGoogle Scholar
  34. Kromkamp J, Peene J (1995) Possibility of net phytoplankton primary production in the turbid Schelde Estuary (SW Netherlands). Mar Ecol Prog Ser 121:249–259CrossRefGoogle Scholar
  35. Labry C, Herbland A, Delmas D (2002) The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. J Plankton Res 24:97–117CrossRefGoogle Scholar
  36. Lancelot C, Rousseau V (1994) Ecology of Phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The Haptophyte algae. Clarendon Press, Oxford, pp 87–103Google Scholar
  37. Lehman P, Smith R (1991) Environmental factors associated with phytoplankton succession for the Sacramento-San Joaquin Delta and Suisun Bay Estuary, California. Est Coast Shelf Sci 32:105–128CrossRefGoogle Scholar
  38. Levasseur M, Therriault JC, Legendre L (1984) Hierarchical control of phytoplankton succession by physical factors. Mar Ecol Prog Ser 19:211–222CrossRefGoogle Scholar
  39. Lewis MR, Smith JC (1983) A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar Ecol Prog Ser 13:99–102CrossRefGoogle Scholar
  40. Lizon F, Lagadeuc Y (1998) Comparisons of primary production values estimated from different incubations times in a coastal sea. J Plankton Res 20:371–381CrossRefGoogle Scholar
  41. Lizon F, Lagadeuc Y, Brunet C, Aelbrecht D, Bentley D (1995) Primary production and photoadaptation of phytoplankton in relation with tidal mixing in coastal waters. J Plankton Res 17:1039–1055CrossRefGoogle Scholar
  42. Lohrenz SE, Fahnenstiel GL, Redalje DG (1994) Spatial and temporal variations of photosynthetic parameters in relation to environmental conditions in coastal waters of the northern Gulf of Mexico. Estuaries 17:779–795CrossRefGoogle Scholar
  43. Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Dagg MJ, Whitledge TE, Dortch Q (1999) Nutrients, irradiance and mixing as factors regulating primary production in coastal waters impacted by the Mississippi River plume. Cont Shelf Res 19:1113–1141CrossRefGoogle Scholar
  44. Macedo M, Duarte P, Mendes P, Ferreira J (2001) Annual variation of environmental variables, phytoplankton species composition and photosynthetic parameters in a coastal lagoon. J Plankton Res 23:719–732CrossRefGoogle Scholar
  45. MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San-Antonio Bay, Texas. Mar Ecol Prog Ser 145:245–268CrossRefGoogle Scholar
  46. Malone TC (1980) Algal size. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, p 625Google Scholar
  47. Malone TC, Neale PJ (1981) Parameters of light-dependent photosynthesis for phytoplankton size fractions in temperate estuarine and coastal environments. Mar Biol 61:289–297CrossRefGoogle Scholar
  48. Middelburg JJ, Nieuwenhuize J (2000) Uptake of dissolved inorganic nitrogen in turbid, tidal estuaries. Mar Ecol Prog Ser 192:79–88CrossRefGoogle Scholar
  49. Moigis AG (1999) Photosynthetic rates in the surface waters of the Red Sea: the radiocarbon versus the non-isotopic dilution method. J Plankton Res 22:713–727CrossRefGoogle Scholar
  50. Montecino V, Quiroz D (2000) Specific primary production and phytoplankton cell size structure in an upwelling area off the coast of Chile (30°S). Aquat Sci 62:364–380CrossRefGoogle Scholar
  51. Muylaert K, Sabbe K, Vyverman W (2000) Spatial and temporal dynamics of phytoplankton communities in a freshwater tidal estuary. Est Coast Shelf Sci 50:673–687CrossRefGoogle Scholar
  52. Nuccio C, Melillo C, Massi L, Innamorati M (2003) Phytoplankton abundance, community structure and diversity in the eutrophicated Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanol Acta 26:15–25CrossRefGoogle Scholar
  53. Parsons TR, Takahashi M, Hargrave B (1984) Biological oceanographic processes. Pergamon Press, OxfordGoogle Scholar
  54. Pemberton K, Rees AP, Miller PI, Raine R, Joint I (2004) The influence of water body characteristics on phytoplankton diversity and production in the Celtic Sea. Cont Shelf Res 24:2011–2028CrossRefGoogle Scholar
  55. Pennock JR, Sharp JH (1986) Phytoplankton production in the Delaware Estuary: temporal and spatial variability. Mar Ecol Prog Ser 34:143–155CrossRefGoogle Scholar
  56. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  57. Raymont JEG (1980) Plankton and productivity in the Oceans. Volume 1 Phytoplankton. Pergamon Press, Oxford Google Scholar
  58. Reid PC, Lancelot C, Gieskes WWC, Hagmeier E, Weichart G (1990) Phytoplankton of the North Sea and its dynamics: a review. Neth J Sea Res 26:295–331CrossRefGoogle Scholar
  59. Ricard M (1987) Atlas du Phytoplancton Marin. Volume II. Diatomophycées. Editions du CNRS, Paris, France, p 297Google Scholar
  60. Ropert M, Dauvin JC (2000) Renewal and accumulation of a Lanice Conchilega (Pallas) population in the Baie des Veys, western Bay of Seine. Oceanol Acta 23:529–546CrossRefGoogle Scholar
  61. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge, p 747Google Scholar
  62. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670CrossRefGoogle Scholar
  63. Shaw PJ, Purdie DA (2001) Phytoplankton photosynthesis-irradiance parameters in the near-shore UK coastal waters of the North Sea: temporal variation and environmental control. Mar Ecol Prog Ser 216:83–94CrossRefGoogle Scholar
  64. Sournia A (1986) Atlas du Phytoplancton Marin. Volume I. Cyanophycées, Dictyochophycées, Dinophycées. Raphidophycées Editions du CNRS, Paris, France, p 219Google Scholar
  65. Snoeijs P, Busse S, Potapova M (2002) The importance of diatom cell size in community analysis. J Phycol 38:265–272CrossRefGoogle Scholar
  66. Steemann Nielsen E (1952) The use of radio-active carbon (14C) for measuring organic production in the sea. J Cons Perm Int Explor Mer 18:117–140CrossRefGoogle Scholar
  67. Tillmann U, Hesse KJ, Colijn F (2000) Planktonic primary production in the German Wadden Sea. J Plankton Res 22:1253–1276CrossRefGoogle Scholar
  68. Tomas CR (1997) Identifying marine phytoplankton. Academic, San Diego, p 858Google Scholar
  69. Valleron AJ, Boumendil A (2004) Epidémiologie et canicules: analyses de la vague de chaleur 2003 en France. CR Biologies 327:1125–1141CrossRefGoogle Scholar
  70. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough I, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annu Rev Ecol Syst 30:257–300CrossRefGoogle Scholar
  71. Yoshikawa T, Furuya K (2004) Long-term monitoring of primary production in coastal waters by an improved natural fluorescence method. Mar Ecol Prog Ser 273:17–30CrossRefGoogle Scholar
  72. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Fabien Jouenne
    • 1
    • 3
  • Sébastien Lefebvre
    • 1
  • Benoît Véron
    • 1
  • Yvan Lagadeuc
    • 2
  1. 1.Laboratoire de Biologie et Biotechnologies Marines, UMR 100–IFREMERUniversité de Caen Basse-NormandieCaen CedexFrance
  2. 2.FR/IFR CAREN, UMR-CNRS EcobioUniversité de Rennes 1Rennes CedexFrance
  3. 3.UMR 7144–Diversity of Oceanic PlanktonStation Biologique de Roscoff-CNRSRoscoff CedexFrance

Personalised recommendations