Marine Biology

, Volume 150, Issue 6, pp 1265–1274 | Cite as

Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes

  • Rafael RoblesEmail author
  • Christoph D. Schubart
  • Jesús E. Conde
  • Carlos Carmona-Suárez
  • Fernando Alvarez
  • José L. Villalobos
  • Darryl L. Felder
Research Article


The genus Callinectes encompasses 16 species of commercially important swimming crabs. Most (13) occur on the Pacific and Atlantic coasts of the Americas. We compare mtDNA regions corresponding to 964 basepairs of the large (16S) and small (12S) ribosomal subunits among American Callinectes in order to examine phylogenetic relationships. The status of Callinectes affinis Fausto-Filho and Callinectes maracaiboensis Taissoun is questioned, and C. maracaiboensis is concluded to be a junior synonym of Callinectes bocourti A. Milne-Edwards, from which it cannot be consistently distinguished. We find two major lineages, one of which includes C. affinis, C. bocourti, Callinectes rathbunae Contreras, Callinectes sapidus Rathbun, and Callinectes toxotes Ordway. A second lineage is comprised of Callinectes arcuatus Ordway, Callinectes bellicosus (Stimpson), Callinectes danae Smith, Callinectes exasperatus (Gerstaecker), Callinectes larvatus Ordway, Callinectes ornatus Ordway, and Callinectes similis Williams. Definition of these clades is supported by previously described morphological differences in the length of the gonopods and shared physioecological adaptations. A calibrated molecular clock is used to estimate divergence of the two lineages near 13 mybp. Our analyses suggest that C. ornatus is the closest relative of C. arcuatus, and that C. affinis is closest to C. bocourti.


Maximum Parsimony Molecular Clock Neighbor Join Land Bridge Neighbor Join Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank F. Mantelatto, C. Fransen, C. Sankarankutty, E. Castañeda, J. Bolaños, and G. Hernández for providing some of the specimens used in our analyses. The manuscript benefited greatly from comments offered by R. Bauer, S. Fredericq, R. Lemaitre, J. Neigel, and two anonymous reviewers. This study was supported under funding from US National Science Foundation (grant nos. DEB-0315995 and EF-0531603) and US Department of Energy (grant no. DE-FG02-97ER12220) to D. L. Felder and the Venezuelan Institute for Scientific Research to J. E. Conde. This is contribution number 115 from the University of Louisiana Laboratory for Crustacean Research.


  1. Ballard WJO, Olsen GJ, Faith DP, Odgers WA, Rowell DM, Atkinson PW (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258:1345–1348CrossRefGoogle Scholar
  2. Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397CrossRefGoogle Scholar
  3. Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci 5:233–234PubMedGoogle Scholar
  4. Crandall KA, Fitzpatrick JF (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst Biol 45:1—26CrossRefGoogle Scholar
  5. Cunningham CW (1997) Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol 46:464–478CrossRefGoogle Scholar
  6. FAO Fishery Information, Data and Statistics Unit (2004) Capture production 2002. FAO yearbook. Fishery statistics, vol 94/1. FAO, RomeGoogle Scholar
  7. Fausto-Filho J (1980) Callinectes affinis a new species of crab from Brazil (Decapoda, Portunidae). Crustaceana 39:33–36CrossRefGoogle Scholar
  8. Felder DL (2001) Diversity and ecological significance of deep-burrowing macrocrustaceans in coastal tropical waters of the Americas (Decapoda: Thalassinidea). Interciencia 26:440–449Google Scholar
  9. Felder DL, Staton JL (1994) Genetic variation in trans-Floridian species complexes of Sesarma and Uca (Crustacea: Decapoda: Brachyura). J Crust Biol 2:191–209CrossRefGoogle Scholar
  10. Felder DL, Staton JL (2000) Lepidophthalmus manningi, a new ghost shrimp from the southwestern Gulf of Mexico (Decapoda: Thalassinidea: Callianassidae). J Crust Biol 20:170–181CrossRefGoogle Scholar
  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  12. Fratini S, Vannini M, Cannicci S, Schubart CD (2005) Tree-climbing mangrove crabs, a case of convergent evolution. Evol Ecol Res 7:219–233Google Scholar
  13. Harrison MK, Crespi BJ (1999) Phylogenetics of Cancer crabs (Crustacea: Decapoda: Brachyura). Mol Phylogenet Evol 12:186–199CrossRefGoogle Scholar
  14. Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefGoogle Scholar
  15. Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393:673–676CrossRefGoogle Scholar
  16. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  17. Huelsenbeck JP, Bull JJ, Cunningham CW (1996) Combining data in phylogenetic analysis. Tree 11:152–158PubMedGoogle Scholar
  18. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  19. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  20. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B Biol 265:2257–2263CrossRefGoogle Scholar
  21. Knowlton N, Weigt LA, Solorzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the Isthmus of Panama. Science 260:1629CrossRefGoogle Scholar
  22. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Willson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefGoogle Scholar
  23. Manning RB, Holthuis LB (1981) West African brachyuran crabs (Crustacea: Decapoda). Smithsonian Contributions Zool 306:1–379CrossRefGoogle Scholar
  24. Norse EA (1977) Aspects of the zoogeographic distribution of Callinectes (Brachyura: Portunidae). Bull Mar Sci 27:1–12Google Scholar
  25. Norse EA, Fox-Norse V (1979) Geographical ecology and evolutionary relationships in Callinectes spp. (Brachyura: Portunidae). In: Proceedings of the Blue Crab Colloquium, Gulf States Marine Fisheries Commission, Biloxi, MS vol 7, pp1–9Google Scholar
  26. Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The Simple Fool’s Guide to PCR. Honolulu, Department of Zoology and Kewalo Marine Laboratory, University of HawaiiGoogle Scholar
  27. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  28. Rambaut A, Charleston M (2000) TreeEdit Version 1 alpha 4-61 (
  29. Rathbun MJ (1919) West Indian Tertiary decapod crustaceans. Carnegie Inst Wash Publ 291:157–184Google Scholar
  30. Rathbun MJ (1933) Brachyuran crabs of Porto Rico and the Virgin Islands. Scientific Survey of Porto Rico and the Virgin Islands. N Y Acad Sci 15:1–121Google Scholar
  31. Sanderson MJA (1997) Nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1232CrossRefGoogle Scholar
  32. Sankarankutty C, Ferreira Roman AC, Callado Pinto CS, Varela Barca FEN, Alencar MDA (1999) Callinectes maracaiboensis Taissoun (Crustacea, Decapoda, Portunidae), a species common but so far unrecorded in the northeast of Brazil. Rev Bras Zool 16:145–150CrossRefGoogle Scholar
  33. Schubart CD, Conde JE, Carmona-Suárez C, Robles R, Felder DL (2001) Lack of divergence between 16S mtDNA sequences of the swimming crabs Callinectes bocourti and C. maracaiboensis (Brachyura: Portunidae) from Venezuela. Fish Bull 99:475–481Google Scholar
  34. Schubart CD, Neigel JE, Felder DL (2000a) Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustac Issues 12:817–830Google Scholar
  35. Schubart CD, Neigel JE, Felder DL (2000b) A molecular phylogeny of mud crabs (Brachyura: Panopeidae) from the northwestern Atlantic and the role of morphological stasis and convergence. Mar Biol 137:11–18CrossRefGoogle Scholar
  36. Stillman JH, Reeb CA (2001) Molecular phylogeny of eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. Mol Phylogenet Evol 19:236–245CrossRefGoogle Scholar
  37. Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  38. Taissoun E (1969) Las especies de cangrejos del género Callinectes (Brachyura) en el Golfo de Venezuela y Lago de Maracaibo. Boletín del Centro de Investigaciones Biológicas, Universidad del Zulia 2:1–103Google Scholar
  39. Taissoun E (1972) Estudio comparativo, taxonómico y ecológico entre los cangrejos (Decapoda: Brachyura: Portunidae), Callinectes maracaiboensis (nueva especie), C. bocourti (A. Milne-Edwards) y C. rathbunae (Contreras) en el Golfo de Venezuela, Lago de Maracaibo y Golfo de México. Boletín del Centro de Investigaciones Biológicas, Universidad del Zulia 6:1–44Google Scholar
  40. Tudge CC, Cunningham CW (2000) Molecular phylogeny of the mud lobsters and mud shrimps (Crustacea: Decapoda: Thalassinidea) using nuclear 18S rDNA and mitochondrial 16S rDNA. Invertebr Syst 16:839–847CrossRefGoogle Scholar
  41. Wägele JW, Stanjek G (1995) Arthropod phylogeny inferred from partial 12SrRNA revisited: monophyly of the Tracheata depends on sequence alignment. J Zool Syst Evol Res 33:75–80CrossRefGoogle Scholar
  42. Weber LI, Puchnick A, Lamego JP, Levy JA (2003) Genetic relationships among the most common swimming crabs of southern Brazil. J Crust Biol 23:201–211CrossRefGoogle Scholar
  43. Williams AB (1974) The swimming crabs of the genus Callinectes (Decapoda: Portunidae). Fish Bull 72:685–798Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rafael Robles
    • 1
    Email author
  • Christoph D. Schubart
    • 1
    • 4
  • Jesús E. Conde
    • 2
  • Carlos Carmona-Suárez
    • 2
  • Fernando Alvarez
    • 3
  • José L. Villalobos
    • 3
  • Darryl L. Felder
    • 1
  1. 1.Department of Biology and Laboratory for Crustacean ResearchUniversity of Louisiana at LafayetteLafayetteUSA
  2. 2.Centro de EcologíaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  3. 3.Colección Nacional de Crustáceos, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México
  4. 4.Biologie IUniversität RegensburgRegensburgGermany

Personalised recommendations