Marine Biology

, Volume 150, Issue 5, pp 749–757 | Cite as

Primary co-culture as a complementary approach to explore the diversity of bacterial associations in marine invertebrates: the example of Nautilus macromphalus (Cephalopoda: Nautiloidea)

  • Mathieu PerniceEmail author
  • Delphine Pichon
  • Isabelle Domart-Coulon
  • Jocelyne Favet
  • Renata Boucher-Rodoni
Research Article


The recent application of molecular tools to address associations between bacteria and marine invertebrates has provided access to an immense diversity of unidentified microbes resistant to cultivation. However, the role of bacteria as partners in animal physiology remains unclear and in most cases difficult to investigate in the absence of adequate condition of cell growth and proliferation. In this work, we studied the reservoir of microbes associated with the excretory organs of Nautilus macromphalus as a model. Using the bacterial 16S RNA gene as a marker, we compared three complementary approaches for bacterial detection: bacterial DNA extraction from N. macromphalus tissues (“molecular approach”), strain isolation to provide a bacterial culture collection (“microbiological approach”) and finally, maintenance of N. macromphalus excretory organ cells with associated bacteria (“cellular approach”). Our results stress the potential of the “cellular approach” as a promising new tool as it promotes the detection of as yet uncultured β-proteobacteria and spirochaetes associated with N. macromphalus, and serves as a foundation for future studies describing potential roles that these bacteria may play in Nautilus.


Marine Agar Pseudomonadales Cellular Approach Microbiological Approach Alteromonadales 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank P. Joannot, S. Loueckote, A. Gerbault and C. Goiran for their help in providing N. macromphalus specimens from New-Caledonia. The help of C. Courties for flow cytometry analysis was highly appreciated. We thank A. Andouche and F. Ponton for helpful comments on this manuscript. This work was supported by a Bonus Quality Research grant from the Muséum National d’Histoire Naturelle (PARIS). The French Ministry for National Education and Research is also acknowledged for providing M. Pernice with a Ph.D. grant. The experiments complied with the current French laws.


  1. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770CrossRefGoogle Scholar
  2. Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167CrossRefGoogle Scholar
  3. Bloodgood RA (1977) The squid accessory nidamental gland, ultrastructure and association with bacteria. Tissue Cell 9:197–208CrossRefGoogle Scholar
  4. Boucher-Rodoni R, Mangold K (1994) Ammonia production in cephalopods: physiological and evolutionary aspects. Mar Freshw Behav Physiol 25:53–60CrossRefGoogle Scholar
  5. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296CrossRefGoogle Scholar
  6. Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7:165–178CrossRefGoogle Scholar
  7. Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ (2004) NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of beneficial association. Cell Microbiol 6(12):1139–1151CrossRefGoogle Scholar
  8. Domart-Coulon I, Doumenc D, Auzoux-Bordenave S, Le Fichant Y (1994) Identification of media supplements that improve the viability of primary cell cultures of Crassostrea gigas oysters. Cytotechnology 16:109–120CrossRefGoogle Scholar
  9. Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A, Klein M, Wagner M, Erseus C, Thiermann F, Krieger J, Giere O, Amann R (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302CrossRefGoogle Scholar
  10. Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051CrossRefGoogle Scholar
  11. Frank U, Rabinowitz C, Rinkevich B (1994) In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar Biol 120:491–499CrossRefGoogle Scholar
  12. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264CrossRefGoogle Scholar
  13. Grigioni S, Boucher-Rodoni R, Demarta A, Tonolla M, Peduzzi R (2000) Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid S. officinalis (Cephalopoda: Decapoda). Mar Biol 136:217–222CrossRefGoogle Scholar
  14. Hall T (1997–2001) BioEdit.
  15. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177CrossRefGoogle Scholar
  16. Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293CrossRefGoogle Scholar
  17. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRefGoogle Scholar
  18. Kaufman MR, Ikeda Y, Patton C, Van Dykhuizen G, Epel D (1998) Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol Bull 194:36–43CrossRefGoogle Scholar
  19. Kimura H, Sato M, Sasayama Y, Naganuma T (2003) Molecular characterization and in situ localization of endosymbiotic 16S ribosomal RNA and RuBisCO genes in the pogonophoran tissue. Mar Biotechnol 5:261–269CrossRefGoogle Scholar
  20. Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396CrossRefGoogle Scholar
  21. Lamarcq LH, McFall-Ngai MJ (1998) Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infect Immun 66(2):777–785PubMedPubMedCentralGoogle Scholar
  22. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBRgreen I. Appl Environ Microbiol 63:186–193PubMedPubMedCentralGoogle Scholar
  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  24. McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14CrossRefGoogle Scholar
  25. McFall-Ngai MJ, Ruby EG (1991) Symbiotic recognition and subsequent morphogenesis as early events in an animal–bacterial mutualism. Science 254:1491–1494CrossRefGoogle Scholar
  26. Nishiguchi MK, Nair VS (2003) Evolution of symbiosis in the Vibrionaceae: a combined approach using molecules and physiology. Int J Syst Evol Microbiol 53(Pt 6):2019–2026CrossRefGoogle Scholar
  27. Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in Sepiolid squid-vibrio symbioses. Appl Environ Microbiol 64(9):3209–3213PubMedPubMedCentralGoogle Scholar
  28. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  29. Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PP, Patterson MK (eds) Tissue culture methods and applications. Academic, New York, pp 406–408CrossRefGoogle Scholar
  30. Pichon D, Gaia V, Norman MD, Boucher-Rodoni R (2005) Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae). Mar Biol 147(6):1323–1332CrossRefGoogle Scholar
  31. Piel J, Butzke D, Fusetani N, Hui D, Platzer M, Wen G, Matsunaga S (2005) Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68:472–479CrossRefGoogle Scholar
  32. Pierantoni U (1917) Organsi luminosi, organi simbiotici e ghiandola nidamentale accessoria nei cefalopodi. Boll Soc Nat Napoli 30:30–36Google Scholar
  33. Rajan TV (2005) The eye does not see what the mind does not know: the bacterium in the worm. Perspect Biol Med 48:31–41CrossRefGoogle Scholar
  34. Rieder G, Fischer W, Haas R (2005) Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol 8(1):67–73CrossRefGoogle Scholar
  35. Schipp R, Martin AW, Liebermann H, Magnier Y (1985) Cytomorphology and function of pericardial appendages of Nautilus (Cephalopoda, Tetrabranchiata). Zoomorphology 105:16–29CrossRefGoogle Scholar
  36. Schipp R, Chung YS, Arnold JM (1990) Symbiotic bacteria in the coelom of Nautilus (Cephalopoda, Tetrabranchiata). Cell Tissue Res 219:585–604Google Scholar
  37. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodernia dissolute. Appl Environ Microbiol 71(8):4840–4849CrossRefGoogle Scholar
  38. Sritharan V, Barker RH (1991) A simple method for diagnosing M. tuberculosis infection in clinical samples using PCR. Mol Cell Probes 5:385–395CrossRefGoogle Scholar
  39. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  40. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444CrossRefGoogle Scholar
  41. Wimmer W, Perovic S, Kruse M, Schroder HC, Krasko A, Batel R, Muller WE (1999) Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 260:156–165CrossRefGoogle Scholar
  42. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mathieu Pernice
    • 1
    Email author
  • Delphine Pichon
    • 1
  • Isabelle Domart-Coulon
    • 1
  • Jocelyne Favet
    • 2
  • Renata Boucher-Rodoni
    • 1
  1. 1.Muséum National d’Histoire Naturelle, Département Peuplements et Milieux AquatiquesBiologie des Organismes Marins et Ecosystèmes (UMR BOME 5178 CNRS)ParisFrance
  2. 2.Laboratory of Molecular Biology of Higher Plants (LBMPS)University of GenevaGenevaSwitzerland

Personalised recommendations