Marine Biology

, Volume 150, Issue 5, pp 819–827 | Cite as

Precipitation of aragonite by calcitic bivalves in Mg-enriched marine waters

  • Antonio G. ChecaEmail author
  • Concepción Jiménez-López
  • Alejandro Rodríguez-Navarro
  • Jorge P. Machado
Research Article


To understand the relative importance of biological versus physicochemical control over biomineralization, we have tested if the chemical composition of the medium (i.e., the Mg/Ca ratio) can change the mineralogy of mollusk shells. The shells of mollusks are made of calcite and/or aragonite, which are by far the most common CaCO3 polymorphs. Several species of bivalves with predominantly calcitic shells have been cultivated in artificial seawater with a Mg/Ca molar ratio within the range of 8.3–9.2, well above the present value for seawater (5.2). Four out of six species used (the scallop Chlamys varia, the oyster Ostrea edulis, the saddle oyster Anomia ephippium and the mussel Mytilus edulis) survived long enough to secrete significant amounts of calcium carbonate. The deposits (sometimes extensive) formed on the interior shell surfaces were predominantly aragonitic. Three individuals of C. varia also increased their length by adding new shell at the margin. Contrary to the internal shell deposits, these margins were high-Mg calcite. This implies that the marginal mantle is able to exert a more strict control on the secreted mineral phase than the mantle facing the internal shell surface. This is the first report on an in vivo experimentally forced switch in bivalve shell mineralogy, from calcite to aragonite due to a change in water chemistry.


Calcite Bivalve Aragonite Calcium Carbonate Nacreous Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Amelia Ocaña and Luis Sánchez-Tocino (Departamento de Biología Animal y Ecología, Universidad de Granada) for aquarium facilities and Juana Cano (Centro Oceanográfico de Fuengirola, Málaga) for providing specimens. Two anonymous reviewers helped to improve the paper through its critical reading. This work was supported by the Spanish–Portuguese Integrated Action HP02-85, the Research Projects BOS2001-3220, CGL2004-00802 and REN2003-07375 (DGI, MEC) and by the Research Group RNM0190 (CICE, JA). C.J.-L. and A.R.-N. also acknowledge financial support through the Programa Ramón y Cajal (MCyT, Spain).


  1. Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S (1987) A chemical-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation- relevance to biomineralization. Proc Natl Acad Sci USA 84:2732–2736CrossRefGoogle Scholar
  2. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem 31:153–169CrossRefGoogle Scholar
  3. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58; DOI 10.1038/381056a0CrossRefGoogle Scholar
  4. Berner RA (1975) The role of magnesium in the cristal growth of calcite and aragonite from seawater. Geochim Cosmochim Acta 39:489–504; DOI 10.1016/0016-7037(75)90102-7CrossRefGoogle Scholar
  5. Bischoff JL, Fyfe WS (1968) Catalysis, inhibition and the calcite-aragonite problem. I. The aragonite-calcite transformation. Am J Sci 266:65–79CrossRefGoogle Scholar
  6. Carter JG, Barrera E, Tevesz MJS (1998) Termal potentiation and mineralogical evolution in the Bivalvia (Mollusca). J Paleontol 72:991–1010CrossRefGoogle Scholar
  7. Deleuze M, Brantley S (1997) Inhibition of calcite crystal growth by Mg2+ at 100°C and 100 bars: influence of growth regime. Geochim Cosmochim Acta 61:1475–1485CrossRefGoogle Scholar
  8. Dodd JR (1964) Environmentally controlled variation in the shell structure of a pelecypod species. J Paleontol 38:1065–1071Google Scholar
  9. Dodd JR (1966) The influence of salinity on mollusk shell mineralogy: a discussion. J Geol 74:85–89CrossRefGoogle Scholar
  10. Eisma D (1966) The influence of salinity on mollusc shell mineralogy: a discussion. J Geol 74:89–94CrossRefGoogle Scholar
  11. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite polymorphism by mollusc shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  12. Falini G (2000) Crystallization of calcium carbonates in biologically inspired collagenous matrices. Int J Inorg Mater 2:455–461CrossRefGoogle Scholar
  13. Feigl F, Anger V (1972) Spot tests in inorganic analysis. Elsevier, AmsterdamGoogle Scholar
  14. Hallock P (1997) Reef and reef limestones in Earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 13–42CrossRefGoogle Scholar
  15. Hardie LA (1996) Secular variation is seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology 24:279–283CrossRefGoogle Scholar
  16. Harper EM, Palmer TJ, Alphey JR (1997) Evolutionary response by bivalves to changing Phanerozoic seawater chemistry. Geol Mag 134:403–407CrossRefGoogle Scholar
  17. Jiménez-López C, Romanek CS, Huertas FJ, Ohmoto H, Caballero E (2004) Oxygen isotope fractionation in synthetic magnesian calcite. Geochim Cosmochim Acta 68:3367–3377; DOI 10.1016/j.gca.2003.11.033CrossRefGoogle Scholar
  18. Kitano Y, Kanamori N (1966) Synthesis of magnesium calcite at low temperaturas and pressures. Geochem J 1:1–10CrossRefGoogle Scholar
  19. Lippmann F (1973) Sedimentary carbonate minerals. Springer, BerlinCrossRefGoogle Scholar
  20. Lorens RB, Bender ML (1980) The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim Cosmochim Acta 44:1265–1278; DOI 10.1016/0016-7037(80)900873CrossRefGoogle Scholar
  21. Lowenstam HA (1954a) Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc Natl Acad Sci USA 40:39–48CrossRefGoogle Scholar
  22. Lowenstam HA (1954b) Factors affecting the aragonite-calcite ratios in carbonate-secreting marine organisms. J Geol 62:284–322CrossRefGoogle Scholar
  23. Mackenzie FT, Piggot JD (1981) Tectonic control of Phanerozoic sedimentary rock cycling. J Geol Soc Lond 138:183–196CrossRefGoogle Scholar
  24. Mackenzie FT, Morse JW (1992) Sedimentary carbonates through Phanerozoic time. Geochim Cosmochim Acta 56:32813295; DOI 10.1016/0016-7037(92)90305-3CrossRefGoogle Scholar
  25. Manoli F, Koutsopoulos S, Dalas E (1997) Crystallization of calcite on chitin. J Cryst Growth 182:116–124CrossRefGoogle Scholar
  26. Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87CrossRefGoogle Scholar
  27. Mucci A, Morse JW (1983) The incorporation of Mg+2 and Sr+2 into calcite overgrowths: influences of growth rate and solution composition. Geochim Cosmochim Acta 47:217–233; DOI 10.1016/0016-7037(83)90135-7CrossRefGoogle Scholar
  28. Reddy MM, Wang KK (1980) Crystallization of calcium carbonate in the presence of metal ions: I. Inhibition by magnesium ion at pH 8.8 and 25°C. J Cryst Growth 50:470–480; DOI 10-1016/0022-0248(80)90095-0CrossRefGoogle Scholar
  29. Ries JB (2005) Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology 31:445–458CrossRefGoogle Scholar
  30. Sandberg PA (1975) New interpretations of Great Salt Lake ooids and of ancient nonskeletal carbonate mineralogy. Sedimentology 22:497–538CrossRefGoogle Scholar
  31. Sandberg PA (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22; DOI 10.1038/305019a0CrossRefGoogle Scholar
  32. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  33. Stanley SM, Ries JB, Hardie LA (2002) Low magnesium calcite produced by coralline algae in seawater of late cretaceous composition. Proc Natl Acad Sci USA 99:15323–15326; DOI 10.1073/pnas.232569499CrossRefGoogle Scholar
  34. Taylor JD, Kennedy WJ, Hall A (1969) Shell structure and mineralogy of the Bivalvia. Introduction. Nuculacae-Trigonacae. Bull Br Mus Nat Hist Zool 3(Suppl):1–125Google Scholar
  35. Thompson JB, Paloczi GT, Kindt JH, Michenfelder M, Smith BL, Stucky G, Morse DE, Hansma PK (2000) Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins. Biophys J 79:3307–3312CrossRefGoogle Scholar
  36. Watabe N, Wilbur KM (1960) Influence of the organic matrix on crystal type in molluscs. Nature 188:334CrossRefGoogle Scholar
  37. Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Saleuddin ASM, Wilbur KM (eds) The mollusca, vol 4, Physiology, part 1. Academic Press, New York, pp 235–287CrossRefGoogle Scholar
  38. Wilkinson BH (1979) Biomineralization, paleooceanography and the evolution of calcareous marine organisms. Geology 7:524–527CrossRefGoogle Scholar
  39. Wilkinson BH, Owen MR, Carroll AR (1985) Submarine hydrothermal weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine oolites. J Sediment Petrol 55:171–183Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Antonio G. Checa
    • 1
    Email author
  • Concepción Jiménez-López
    • 2
  • Alejandro Rodríguez-Navarro
    • 3
  • Jorge P. Machado
    • 4
  1. 1.Departamento de Estratigrafía y Paleontología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Mineralogía y Petrología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  4. 4.Laboratorio de Fisiologia Aplicada, Instituto de Ciências BiomédicasUniversidade de PortoPortoPortugal

Personalised recommendations