Marine Biology

, Volume 150, Issue 5, pp 829–840

Gametogenic periodicity in the chemosynthetic cold-seep mussel “Bathymodiolus” childressi

  • Paul Tyler
  • Craig M. Young
  • Emily Dolan
  • Shawn M. Arellano
  • Sandra D. Brooke
  • Maria Baker
Research Article

Abstract

The gametogenic periodicity of the cold seep mussel “Bathymodiolus” childressi was analysed from a time series of samples from depths of ∼ 650 m surrounding the Brine Pool cold seep on the continental slope of the northern Gulf of Mexico. Occasional samples were retrieved from Bush Hill and GC 234 for comparison. At the Brine Pool, both females and males showed strong reproductive periodicity with the initiation of gametogenesis from December to March, followed by a period of gamete growth or proliferation and spawning from October to February. Gametogenesis was synchronized at all three sites. Gametogenic periodicity appears to be correlated with surface production that peaks during the winter months. Downward flux of detritus during this period may provide food for the planktotrophic larvae and also supplementary nutrition for the adult, which has chemosynthetic bacterial symbionts but is also capable of filter feeding. Individuals in all three populations carried parasites and these were especially common at Bush Hill and GC234, where it is suggested they have a major impact on reproductive output.

References

  1. Berg CJ (1985) Reproductive strategies of mollusks from abyssal hydrothermal vent communities. Bull Biol Soc Wash 6:185–197Google Scholar
  2. Bergquist DC, Fleckenstein C, Szalai EB, Knisel J, Fisher CR (2004) Environment drives physiological variability in the cold seep mussel Bathymodiolus childressi. Limnol Oceanogr 49:706–715CrossRefGoogle Scholar
  3. Colaço A, Martins I, Laranjo M, Pires L, Leal C, Prieto C, Costa V, Lopes H, Rosa D, Dando PR, Serrāo-Santos R (2005) Annual spawning of the hydrothermal vent mussel Bathymodiolus azoricus, in the wild and under controlled aquarium conditions at atmospheric pressure. J Exp mar Biol Ecol 333:166–171CrossRefGoogle Scholar
  4. Comtet T, Desbruyères D (1998) Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37°17′N and 37°50′N on the Mid-Atlantic Ridge). Mar Ecol Prog Ser 163:165–177Google Scholar
  5. Comtet T, Le Pennec M, Desbruyères D (1999) Evidence of a sexual pause in Bathymodiolus azoricus (Bivalvia: Mytilidae) from hydrothermal vents of the Mid-Atlantic Ridge. J Mar Biol Ass UK 79(6):1149–1150CrossRefGoogle Scholar
  6. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Dainbridge A, Crane K, Andel TH (1979). Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083CrossRefPubMedGoogle Scholar
  7. von Cosel RT, Metivier B, Hashimoto J (1994) Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau Basin and the North Fiji Basin, western Pacific, and the Snake Pit area, Mid-Atlantic Ridge. Veliger 37:374–392Google Scholar
  8. von Cosel RT, Comtet T, Krylova E (1997) Two new species of Bathymodiolus from hydrothermal vents on the Mid-Atlantic Ridge. Cah Biol Mar 38:145–146Google Scholar
  9. Craddock C, Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RJ (1995a). Extensive gene flow among mytilid (Bathymodiolus thermophilus) populations from hydrothermal vents of the eastern Pacific. Mar Biol 124:137–146CrossRefGoogle Scholar
  10. Craddock C Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RC (1995b) Evolutionary relationships among deep-sea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar Biol 121:477–485CrossRefGoogle Scholar
  11. Eckelbarger KJ, Young CM (1999) Ultrastructure of gametogenesis in a chemosynthetic mytilid bivalve (Bathymodiolus childressi) from a bathyal, methane seep environment (northern Gulf of Mexico). Mar Biol 135:635–646CrossRefGoogle Scholar
  12. Fiala-Medioni A, Metivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp. Mar Biol 92:65–72CrossRefGoogle Scholar
  13. Fisher CR (1993) Oxidation of methane by deep-sea mytilids in the Gulf of Mexico. Biogeochemistry of global change. R. S. Overland. Chapman and Hall, New York, pp 606–618Google Scholar
  14. Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71CrossRefGoogle Scholar
  15. Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, CambridgeGoogle Scholar
  16. Gustafson RG, Turner RD, Lutz RA, Vrijenhoek RC (1998) A new genus and five new species of mussels (Bivalvia, Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–112Google Scholar
  17. Hashimoto J, Okutani T (1994) Four new mytilid mussels associated with deepsea chemosynthetic communities around Japan. Venus Jap J Malacol 53:61–83Google Scholar
  18. Jasmin AK, Brand AR (1989) Observations on the reproduction of Modiolus modiolus in Isle of Man waters. J Mar Biol Ass UK 69:373–385CrossRefGoogle Scholar
  19. Jones J, Won Y-J, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC (2005) Evolution of habitat use by deep-sea mussels. Mar Biol DOI 10.1007/s00227-005-0115-1Google Scholar
  20. Kenk VC, Wilson RB (1985) A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift Zone. Malacologia 26:253–271Google Scholar
  21. Le Pennec M, Beninger PG (1997) Aspects of the reproductive strategy of bivalves from reducing-ecosystem. Cah Biol Mar 38:132–133Google Scholar
  22. Lutz RA (1988) Dispersal of organisms at deep-sea hydrothermal vents: a review. Oceanol Acta Special No. 8:23–29Google Scholar
  23. Lutz RA, Jablonski D, Rhoads DC, Turner RD (1980) Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar Biol 57:127–133CrossRefGoogle Scholar
  24. MacDonald IR, Boland GS, Baker JS, Brooks JM, Kennicutt III MC, Bidigare RR (1989) Gulf of Mexico hydrocarbon seep communities. 2. Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Mar Biol 101:235–247CrossRefGoogle Scholar
  25. MacDonald IR, Callender WR, Rurke Jr RA, McDonald SJ, Carney RS (1990a) Fine-scale distribution of methanotrophic mussels at a Louisiana cold seep. Prog Oceanogr 24:15–24CrossRefGoogle Scholar
  26. MacDonald IR, Reilly II JF, Guinasso Jr NL, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990b) Chemosynthetic mussels in a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099CrossRefGoogle Scholar
  27. Myint M, Tyler PA (1982) Effects of temperature, nutritive and metal stressors on the reproductive biology of Mytilus edulis. Mar Biol 67:209-223CrossRefGoogle Scholar
  28. Miyazaki JI, Shintaku M, Kyuno A, Fujiwara Y, Hashimoto J, Iwasaki H (2004) Phylogenetic relationships of deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytlidae). Mar Biol 144:527–535CrossRefGoogle Scholar
  29. Moraga DD, Jollivet D, Denis F (1994) Genetic differentiation across the western Pacific populations of the hydrothermal vent bivalve Bathymodiolus spp. and the eastern Pacific (13°N) population of Bathymodiolus thermophilus. Deep-Sea Res 41:1551–1567CrossRefGoogle Scholar
  30. Műller-Karger FE, Walsh JJ, Evans RH, Meyers MB (1991) On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J Geophys Res 96:12645–12665CrossRefGoogle Scholar
  31. Page HM, Fisher CR, Childress JJ (1990) Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts. Mar Biol 104:251–257CrossRefGoogle Scholar
  32. Pile AJ, Young CM (1999). Plankton availability and retention efficiencies by cold-seep symbiotic mussels. Limnol Oceanogr 44:1833–1839CrossRefGoogle Scholar
  33. Pipe RK (1987) Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Mar Biol 95:405–414CrossRefGoogle Scholar
  34. Powell EN, Barber RD, Kennicutt II MC, Ford SE (1999) Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels. Deep-Sea Res 46:2053–2078CrossRefGoogle Scholar
  35. Seed R (1969) The ecology of Mytilus edulis (L.)(Lamellibranchiata) on exposed rocky shores. I. Breeding and settlement. Oecologia 3:277–316CrossRefGoogle Scholar
  36. Seed R (1975) Reproduction in Mytilus (Mollusca: Bivalvia) in European waters. Pubbl Staz Zool Napoli 39(Suppl):317–334Google Scholar
  37. Smith PJ, McVeagh SM, Won Y, Vrijenhoek RC (2004) Genetic heterogeneity among New Zealand species of hydrothermal vent mussels (Mylilidae: Bathymodiolus). Mar Biol 144:537–545CrossRefGoogle Scholar
  38. Tyler PA, Grant A, Pain SL, Gage JD (1982) Is annual reproduction in deep-sea echinoderms a response to changes in their environment? Nature 300:747–749CrossRefGoogle Scholar
  39. Vrijenhoek RC (1997) Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J Hered 88:285–293PubMedGoogle Scholar
  40. Wilson-Ormond EA, Ellis MS, Powell EN, Kim Y, Li S (1999) Effects of gas-producing platforms on continental shelf macroepifauna in the northwestern Gulf of Mexico: reproductive status and health. Int Rev ges Hydrobiol 85:293–323CrossRefGoogle Scholar
  41. Won YJ, Young CR, Lutz RA, Vrijenhoek RC (2003) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from the Eastern Pacific hydrothermal vents. Mol Ecol 12:169–184PubMedCrossRefGoogle Scholar
  42. Young CM (2003) Reproduction, development and life-history traits. In: Tyler PA (ed) Ecosystems of the World v28 Deep-sea ecosystems, Elsevier, Amsterdam, pp 381–426Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Paul Tyler
    • 1
  • Craig M. Young
    • 2
  • Emily Dolan
    • 1
  • Shawn M. Arellano
    • 2
  • Sandra D. Brooke
    • 2
  • Maria Baker
    • 1
  1. 1.School of Ocean and Earth Science, National Oceanography CentreUniversity of SouthamptonSouthamptonUK
  2. 2.Oregon Institute of Marine BiologyUniversity of OregonCharlestonUSA

Personalised recommendations