Marine Biology

, Volume 150, Issue 2, pp 273–284 | Cite as

Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei

  • Benjamin Marie
  • Bertrand Genard
  • Jean-François Rees
  • Franck Zal
Research Article

Abstract

The alvinellid Paralvinella grasslei is a common endemic polychaete from the deep-sea hydrothermal vent communities located on the East Pacific Rise (EPR). These organisms colonise a large range of microhabitats around active sites where physico-chemical conditions are thought to generate reactive oxygen species (ROS). Furthermore, in this aerobic organism, ROS could also be generated by the activity of the mitochondrial respiratory chain. In this paper, we investigated the effect of ambient oxygen concentration on the activities of three essential antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX) and their relationships with the activity of enzymes involved in aerobic metabolism (cytochrome c oxidase, COX; citrate synthase, CS). Results of incubation of P. grasslei in a high-pressure vessel with circulating seawater at different oxygen partial pressures indicate that this worm regulates COX and CS activities differently in gills and body wall. CAT and GPX activities increase in these tissues when animals are maintained in filtered surface seawater. Moreover, levels of malondialdehyde increase in gills, testifying that oxidative damage occurs under these conditions. CAT and GPX activities are positively related to COX and CS activities, but no correlation was detected between SOD and the metabolic enzyme activities. In comparison with littoral annelids, SOD activities are very high whereas CAT activities are very low or absent in P. grasslei. The possible reasons for the occurrence of such differences are discussed.

Notes

Acknowledgements

The authors would like to thank the captain and the crews of the N/O L’Atalante and ROV Victor 6000. We are also very grateful to Nadine Le Bris and Françoise Gaill, the chief scientists of the French research cruise PHARE’02. We thank Dominique Davoult for his advice on statistical treatments. We would also like to thank Bruce Shillito for the experiments realized in IPOCAMP and Cécile Marchand for assistance in the laboratory. We thank the EAEM team from Roscoff for their advises and comments on this work. We are also very grateful to the four anonymous referees for their useful comments and remarks, which considerably improve the submitted form of this manuscript. These studies were supported by the French Ministère des Affaires Etrangères under the Integrated Program Action called Tournesol (N° 05365 GT) and the Fonds de la Recherche Fondamentale Collective (FRFC) convention 2.4595.06.

References

  1. Abele-Oeschger D (1996) A comparative study of superoxide dismutase activity in marine benthic invertebrates with respect to environmental sulfide exposure. J Exp Mar Biol Ecol 197:39–49CrossRefGoogle Scholar
  2. Abele-Oeschger D, Oeschger R (1995) Hypoxia-induced autoxidation of haemoglobin of the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (bivalvia) and the possible effects of sulfide. J Exp Mar Biol Ecol 187:63–80CrossRefGoogle Scholar
  3. Abele-Oeschger D, Oeschger R, Theede H (1994) Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporality increased hydrogen peroxide levels in intertidal sandflats. Mar Ecol Prog Ser 106:101–110Google Scholar
  4. Abele D, Groβpietsch H, Pörtner H (1998) Temporal fluctuations and spatial gradients of environmental PO2, temperature, H2O2 and H2S antioxidant protection in capitellid worm Heteromastus filiformis. Mar Ecol Prog Ser 163:179–191Google Scholar
  5. Blum J, Fridovich I (1984) Enzymatic defenses against oxygen toxicity in the hydrothermal vents animals Riftia pachyptila and Calyptogena magnifica. Arch Biochem Biophys 228:617–620PubMedCrossRefGoogle Scholar
  6. Buchner T, Abele-Oechger D, Theede H (1996) Aspect of antioxidant status in polychaete Arenicola marina: tissue and subcellular distribution, and reaction to environmental hydrogen peroxide and elevated temperatures. Mar Ecol Prog Ser 143:141–150Google Scholar
  7. Buja LM (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14:170–175PubMedCrossRefGoogle Scholar
  8. Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress and aging. Free Rad Biol Med 29:222–230PubMedCrossRefGoogle Scholar
  9. Chausson F, Sanglier S, Leize E, Hagège A, Bridges CR, Sarradin P-M, Shillito B, Lallier FH, Zal F (2004) Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron 35:31–41PubMedCrossRefGoogle Scholar
  10. Cherry R, Desbruyères D, Heyraud M, Nolan C (1992) Highs levels of natural radioactivity in hydrothermal vent polychaetes. C R Acad Sci Paris 315:21–26Google Scholar
  11. Childress JJ, Fischer CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–341Google Scholar
  12. Childress JJ, Somero GN (1979) Depth-related enzymatic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar Biol 52:273–283CrossRefGoogle Scholar
  13. Cosson-Mannevy MA, Cosson RP, Gaill F, Laubier L (1988) Transfert, accumulation et régulation des éléments minéraux chez les organismes des sources hydrothermales. Oceanol Acta n spécial, pp 219–226Google Scholar
  14. Cosson RP, Vivier JP (1997) Interactions of metallic elements and organisms within hydrothermal vents. Cah Biol Mar 38:43–50Google Scholar
  15. Dahlhoff E, Somero GN (1991) Pressure and temperature adaptation of cytosolic malate dehydrogenase of shallow- and deep-living marine invertebrates: evidence for high body temperature in hydrothermal vent animals. J Exp Biol 159:473–482Google Scholar
  16. De Oliveira EM, Suzuki MF, Do Nascimento PA, Da Silva MA, Okasaki K (2001) Evaluation of effect of 90Sr beta-radiation on human blood cells by chromosome aberration and single cell gel electrophoresis (comet assay) analysis. Mut Res 476:109–121Google Scholar
  17. Desbruyères D, Crassous P, Grassle JF, Khripounoff A, Reyss D, Rio M, Van Praët M (1982) Données écologiques sur un nouveau site d’hydrothermalisme actif de la ride du Pacifique oriental. C R Acad Sci Paris Sér III 295:489–494Google Scholar
  18. Desbruyères D, Laubier L (1982) Paralvinella grasslei, new genus, new species of Alvinellidae (Polychaeta: Ampharetridae) from the Galapagos Rift geothermal vents. Proc Biol Soc Wash 95:484–494Google Scholar
  19. Desbruyères D, Laubier L (1991) Systematic, phylogeny, ecology and distribution of Alvinellidae (Polycaeta) from deep-sea hydrothermal vents. Ophelia 5(Suppl):31–45Google Scholar
  20. Desbruyères D, Chevaldonné P, Alayse AM, Jollivet D, Lallier F, Jouin-Toulmond C, Zal F, Sarradin P-M, Cosson R, Caprais JC, Arnt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the « Pompeii worm » (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environnement: a synthesis of current knowledge and recent developments. Deep Sea Res II 45:383–422CrossRefGoogle Scholar
  21. Di Meo-Savoie CA, Luther GW III, Cary CS (2004). Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochim Cosmochim Acta 68:2055–2066CrossRefGoogle Scholar
  22. Dixon D, Dixon LRJ, Shillito B, Gwynn JP (2002) Background and induced levels of DNA damage in Pacific deep-sea vents polychaetes: the case for avoidance. Cah Biol Mar 43:333–336Google Scholar
  23. Edmond JM, Von Damm KL, McDuff RE, Measures CI (1982) Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297:187–191CrossRefGoogle Scholar
  24. Flohé L, Ötting F (1985) Superoxide dismutase assays. Method Enzymol 105:93–105Google Scholar
  25. Fox HM, Taylor AER (1955) The tolerance of oxygen by aquatic invertebrates. Proc R Soc Lond Sec B 143:214–225CrossRefGoogle Scholar
  26. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209PubMedGoogle Scholar
  27. Geracitano LA, Monserrat JM, Bianchini A (2004) Oxidative stress in Laeonereis acuta (Polychaeta, Nereididae): environmental and seasonal effects. Mar Environ Res 58:625–630PubMedCrossRefGoogle Scholar
  28. Halliwell B, Gutteridge BC (1986) Oxygen free radicals and iron in relation to biology and medecine: some problems and concept. Arch Biochem Biophys 246:501–514PubMedCrossRefGoogle Scholar
  29. Halliwell B, Gutteridge BC (1989) Free radicals in biology and medecine, 2nd edn. Clarendon Press, London, pp 139–187Google Scholar
  30. Hand SC, Somero GN (1983) Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and a sulfide-rich deep-sea environment. Biol Bull 165:167–181Google Scholar
  31. Hermes-Lima M, Storey JM, Storey KB (1988). Antioxidant defenses and metabolic depression. The hypothesis of the preparation for oxidative stress in land snails. Comp Biochem Physiol Part B 120:437–448CrossRefGoogle Scholar
  32. Hourdez S, Lallier FH, De Cian M-C, Green BN, Weber RE (2000) The gas transfer system in Alvinella pompejana (Annelida Polychaeta, Terebellida). Functional properties of intracellular and extracellular hemoglobins. Physiol Bioch Zool 73:365–373CrossRefGoogle Scholar
  33. Issels RD, Fink RM, Lengfelder E (1986) Effects of hyperthermic conditions on the reactivity of oxygen radicals. Free Radic Res Commun 2:7–18PubMedGoogle Scholar
  34. Janssens BJ, Childress JJ, Baguet F, Rees JF (2000) Reduction of enzymatic antioxidative defense in deep sea fish. J Exp Biol 203:3717–3725PubMedGoogle Scholar
  35. Johnson KS, Childresss JJ, Sakamoto-Arnold CM, Hessler RR, Beehler CL (1988) Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep Sea Res 35:1723–1744CrossRefGoogle Scholar
  36. Jollivet D, Desbruyères D, Ladrat C, Laubier L (1995) Evidence for differences in allozyme thermostability of deep-sea hydrothermal vent polychaetes (Alvinellidae): a possible selection by habitat. Mar Ecol Prog Ser 123:125–136Google Scholar
  37. Jouin C, Gaill F (1990) Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in two alvinellid species. Prog Oceanogr 24:59–69CrossRefGoogle Scholar
  38. Juniper KS, Martineu P (1995) Alvinellids and sulfides at hydrothermal vents of the Eastern Pacific: a review. Am Zool 35:174–185Google Scholar
  39. Keller M, Sommer AM, Pörtner HO, Abele D (2004) Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. J Exp Biol 207:2529–2538PubMedCrossRefGoogle Scholar
  40. Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths N, Gore M, Ji LL (1997) Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol 272:R363–R369PubMedGoogle Scholar
  41. Lowry OH, Rosebrough NL, Farr A, Randall RI (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. Lucassen M, Schmidt A, Eckerle LG, Pörtner HO (2003) Mitochondrial proliferation in the permanent vs temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Am J Physiol Regul Integr Comp Physiol 285:1410–1420Google Scholar
  43. Maral J, Puget K, Michelson AM (1977) Comparative study of superoxide dismutase, catalase and glutathion peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun 77:1525–1535PubMedCrossRefGoogle Scholar
  44. Millero FJ, LeFerriere A, Fernandez M, Hubinger S, Hershey JP (1989) Oxidation of H2S with H2O2 in natural waters. Environ Sci Technol 23:209–213CrossRefGoogle Scholar
  45. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of haemoglobin. J Biol Chem 247(21):6960–6962PubMedGoogle Scholar
  46. Morales AE, Perez-Jimenez A, Hidalgo MC, Abellan E, Cardenete G (2004) Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol 139:153–161Google Scholar
  47. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathion peroxidase. J Lab Clin Med 70:158–168PubMedGoogle Scholar
  48. Saint-Denis M, Labrot F, Narbonne JF, Ribera D (1998) Glutathione, Glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida andrei. Arch Environ Toxicol 35:602–614CrossRefGoogle Scholar
  49. Shepherd D, Garland PB (1969) Citrate synthase assay. Meth Enzymol 13:11–16Google Scholar
  50. Shillito B, Jollivet D, Sarradin P-M, Rodier P, Lallier F, Desbruyères D, Gaill F (2001) Temperature resistance of Hesiolyra bergi, a polychaetous annelid living in deep-sea vents smoker walls. Mar Ecol Prog Ser 216:141–149Google Scholar
  51. Shillito B, Le Bris N, Gaill F, Rees J-F, Zal F (2004) First access to live Alvinellas. High Pres Res 24:169–172CrossRefGoogle Scholar
  52. Sommer AM, Pörtner HO (2002) Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and White Sea population. Mar Ecol Prog Ser 240:171–182Google Scholar
  53. Staniek K, Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 1460:268–275PubMedCrossRefGoogle Scholar
  54. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Rad Med Biol 18:321–336CrossRefGoogle Scholar
  55. Storey KB (1996) Oxidative stress: animal adaptation in nature. Brazil J Med Biol Res 29:1715–1733Google Scholar
  56. Tapley DW, Buettner GR, Shick JM (1999) Free radicals and chemoluminescence as products of spontaneous oxidation of sulfide in sea-water, and their biological implications. Biol Bull 196:52–56Google Scholar
  57. Thuesen EV, Childress JJ (1993) Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particulary Nectonemertes mirabilis (Nemertea; Hoplonemerinea) and Poeobius meseres (Annelida; Poychaeta). Deep Sea Res I 40:937–951CrossRefGoogle Scholar
  58. Thuesen EV, Childress JJ (1994) Oxygen consumption rates and metabolic enzymes activities of oceanic California medusae in relation to body size and habitat depth. Biol Bull 187:84–98Google Scholar
  59. Toulmond A, Tchernigovtzeff C (1984) Ventilation at respiratory gas exchanges of the lugworm Arenicola marina (L.) as functions of ambient PO2 (20–700 torr). Respir Physiol 57:349–363PubMedCrossRefGoogle Scholar
  60. Toulmond A, El Idrissi Slitine F, De Frescheville J, Jouin C (1990) Extracellular haemoglobins of hydrothermal vent annelids: structural and functional characteristics in three alvinellid species. Biol Bull 179:366–373Google Scholar
  61. Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanog Mar Biol Ann Rev 29:319–407Google Scholar
  62. Vincent HK, Powers SK, Stewart DJ, Demirel HA, Shanely RA, Naito H (2000) Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol 81:67–74PubMedCrossRefGoogle Scholar
  63. Von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Ann Rev Earth Planet Sci 18:173–204CrossRefGoogle Scholar
  64. Warner DS, Sheng H, Batinić-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231PubMedCrossRefGoogle Scholar
  65. Yagi K (1984) Assay for blood plasma or serum. Meth Enzymol 105:328–331PubMedCrossRefGoogle Scholar
  66. Yin M, Palmer HR, Fyfe-Johnson AL, Bedford JJ, Smith RA, Yancey PH (2000) Hypotaurine, N-Methyltaurine, Taurine and Gycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Phys Biochem Zool 73:629–637CrossRefGoogle Scholar
  67. Zal F, Jollivet D, Chevaldonné P, Desbruyères D (1995). Reproductive biology and population structure of the deep-sea hydrothermal vent worm Paralvinella grasslei (Polychaeta:Alvinellidae) at 13°N on the East Pacific Rise. Mar Biol 122:637–648CrossRefGoogle Scholar
  68. Zal F, Green BN, Martineu P, Lallier FH, Toulmond A, Vinogradov SN, Childress JJ (2000) Polypeptide chain composition diversity of hexagonal-bilayer haemoglobins within a single family of annelids, the Alvinellidae. Eur J Bioch 267:5227–5236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Benjamin Marie
    • 1
  • Bertrand Genard
    • 2
  • Jean-François Rees
    • 2
  • Franck Zal
    • 1
  1. 1.Equipe Ecophysiologie : Adaptation et Evolution MoléculairesUPMC – CNRS UMR 7144, Station BiologiqueRoscoff cedexFrance
  2. 2.Institut des Sciences de la VieUniversité Catholique de Louvain, Animal Biology UnitLouvain-la-NeuveBelgium

Personalised recommendations