Marine Biology

, Volume 149, Issue 6, pp 1313–1324 | Cite as

Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem

  • Rocío López-FloresEmail author
  • Dani Boix
  • Anna Badosa
  • Sandra Brucet
  • Xavier D. Quintana
Research Article


Pigment composition and size distribution of phytoplankton were analysed in a group of Mediterranean salt marshes, where hydrology is dominated by sudden inputs during sea storms, followed by long periods of confinement. These marshes are characterized by a low inorganic–organic nutrient ratio, and inorganic nitrogen is especially scarce due to denitrification. Nutrients were the main factor affecting phytoplankton biomass, while zooplankton grazing did not control either phytoplankton community composition, or their size distribution. The relative abundance of the different phytoplankton groups was analysed by correspondence analysis using the pigment composition measured by high-performance liquid chromatography (HPLC) and analysed with the CHEMTAX programme. In this analysis, phytoplankton pigment composition was correlated with two nutrient gradients. The first gradient was the ratio of nitrate–total nitrogen (TN), since the different phytoplankton groups were distributed according to their eco–physiological differences in nitrogen uptake. The second gradient was correlated with total nutrient loading. Biomass size distributions frequently showed a lack of intermediate sized nanophytoplankton (2.5–4 μm in diameter), and the importance of this lack of intermediate sizes correlated with dinoflagellate biomass. These results suggested that in confined environments, where nutrients are mainly in an organic form, dinoflagellates take advantage of their mixotrophy, by competing and grazing on smaller phytoplankters simultaneously.


Phytoplankton Total Organic Carbon Total Phosphorus Dinoflagellate Canonical Correspondence Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant from the Comisión de Investigación Científica y Técnica (CICYT), Programa de Recursos Naturales (ref. CGL2004-05433 / BOS) and by a BR grant of the University of Girona. Anonymous reviewers are thanked for their comments that led to the final manuscript.


  1. Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the “control rod” model of plankton interaction. Deep Sea Res (II Top Stud Oceanogr) 50:2895–2916CrossRefGoogle Scholar
  2. Badosa A, Boix D, Brucet S, Lopez-Flores R, Quintana XD (2006) Nutrients and zooplankton composition and dynamics in relation to the hydrological pattern in a confined Mediterranean salt marsh (NE Iberian Peninsula). Estuar Coast Shelf Sci 66:513–522CrossRefGoogle Scholar
  3. Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E, Penna A, Sarà M (2000) Parasitic diatoms inside antartic sponges. Biol Bull 198:29–33PubMedCrossRefGoogle Scholar
  4. Boix D (2000) Estructura i dinàmica de la comunitat animal aquàtica de l’estanyol temporani d’Espolla. Doctorate Thesis. Universitat de Girona, p 663Google Scholar
  5. Britton RH, Crivelli AJ (1993) Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigman DF, Dykyjová D, Hejný S (eds) Wetlands of the world I: inventory, ecology and management. Kluwer, The Netherlands, pp 129–194Google Scholar
  6. Brucet S, Quintana XD, Moreno-Amich R, Boix D (2005) Changes in the shape of zooplankton biomass-size spectra at ecological scaling in a fluctuanting ecosystem (Empordà Wetlands, NE Spain). Vie Milieu 55:31–40Google Scholar
  7. Capblancq J (1990) Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207:1–14CrossRefGoogle Scholar
  8. Cerón García MC, Fernández Sevilla JM, Ancién Fernández FG, Molina Grima E, García Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248CrossRefGoogle Scholar
  9. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biochemical cycles in the sea. Plenum, New York, pp 213–237Google Scholar
  10. Comín FA, Valiela I (1993) On the controls of phytoplankton abundance and production in coastal lagoons. J Coast Res 9:895–906Google Scholar
  11. Cruz-Pizarro L, Carrillo P (1991) Top-down regulation under different species-specific and size-structure grazer assemblages in an oligotrophic lake. In: Giussani G, Van Liere L, Moss B (eds) Ecosystem research in freshwater environment recovery. Pallanza, pp 23–37Google Scholar
  12. Dickie LM, Kerr SR, Boudreau PR (1987) Size-dependent processes underlying regularities in ecosystem structure. Ecol Monogr 57:233–250CrossRefGoogle Scholar
  13. Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia 19:75–97CrossRefGoogle Scholar
  14. Fathi AA, Abdelzaher HMA, Flower RJ, Ramdani M, Kraïem MM (2001) Phytoplankton communities of North African wetlands lakes: the CASSARINA Project. Aquat Ecol 35:303–318CrossRefGoogle Scholar
  15. Franks PJS (2001) Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing. J Plankton Res 23:1433–1441CrossRefGoogle Scholar
  16. Gasiunaite ZR, Olenina I (1998) Zooplankton-phytoplankton interactions: a possible explanation of the seasonal succession in the Kursiu Marios lagoon. Hydrobiologia 363:333–339CrossRefGoogle Scholar
  17. Gasol JM, Del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar (Barc) 64:197–224Google Scholar
  18. Golterman HL (1999) Quantification of P-flux through shallow, agricultural and natural waters as found in wetlands of the Camargue (S-France). Hydrobiologia 392:29–39CrossRefGoogle Scholar
  19. Golterman HL (2000) Denitrification and a numerical modelling approach for shallow waters. Hydrobiologia 431:93–104CrossRefGoogle Scholar
  20. Granéli E, Turner JT (2002) Top-down regulation in ctenophore-copepod-ciliate-diatom-phytoflagellate communities in coastal waters: a mesocosm study. Mar Ecol Prog Ser 239:57–68CrossRefGoogle Scholar
  21. Granéli E, Carlsson P, Legrand C (1999) The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquat Ecol 33:17–27CrossRefGoogle Scholar
  22. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chimie, WeiheimGoogle Scholar
  23. Guelorget O, Perthuisot J-P, Lamy N, Lefebvre A (1994) Structure et organisation de l’étang de Thau d’après la faune benthique (macrofaune, méiofaune). Relations avec le confinement. Oceanol Acta 17:105–114Google Scholar
  24. Harrison WG, Wood LE (1988) Inorganic nitrogen uptake by marine picoplankton: Evidence for size partitioning. Limnol Oceanogr 33:468–475Google Scholar
  25. Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  26. Isaksson A (1998) Phagotrophic phytoflagellates in lakes—a literature review. Arch Hydrobiol Spec Issues Advanc Limnol 51:63–90Google Scholar
  27. Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202CrossRefGoogle Scholar
  28. Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226CrossRefGoogle Scholar
  29. Li A, Stoecker DK, Coats DW, Adam EJ (1996) Ingestion of fluorescently labeled and phycoerythrin-containing prey by mixotrophic dinoflagellates. Aquat Microb Ecol 10:139–147CrossRefGoogle Scholar
  30. Li A, Stoecker DK, Coats DW (2001) Use of the “food vacuole content” method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes. J Plankton Res 23:303–318CrossRefGoogle Scholar
  31. Lohrenz SE, Carroll CL, Weidemann AD, Tuel M (2003) Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Cont Shelf Res 23:1447–1464CrossRefGoogle Scholar
  32. López-Flores R, Garcés E, Boix D, Badosa A, Brucet S, Masó M, Quintana XD (2006) Comparative composition and dynamics of harmful dinoflagellates in Mediterranean salt marshes and nearby external marine waters. Harmful Algae (in press)Google Scholar
  33. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX-A program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  34. Malley DF, Lawrence SG, Maclver MA, Findlay WJ (1989) Range of variation in estimates of dry weight for planktonic crustacea and rotifera from temperate north American lakes. Can Tech Rep Fish Aquat Sci 1666:0–49Google Scholar
  35. Malone TC (1980) Algal size and phytoplankton ecology. In: Morris I (ed) Physiological ecology of phytoplankton. Blackwell, Oxford, pp 433–463Google Scholar
  36. Moss B, McGowan S, Carvalho L (1994) Determination of phytoplankton crops by top-down and bottom-up mechanism in a group of English lakes, the West Midlands meres. Limnol Oceanogr 39:1020–1029CrossRefGoogle Scholar
  37. Muylaert K, Declerck S, Geenens V, Van Wichelen J, Degans H, Vandekerkhove J, Van der Gucht K, Vloemans N, Rommens W, Rejas D, Urrutia R, Sabbe K, Gillis M, Decleer K, De Meester L, Vyverman W (2003) Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquat Ecol 37:137–150CrossRefGoogle Scholar
  38. Olson RJ, Vaulot D, Chisholm SW (1985) Marine phytoplankton distributions measured using shipboard flow cytometry. Deep-Sea Res 32:1273–1280CrossRefGoogle Scholar
  39. Olson RJ, Zettler ER, Anderson OK (1989) Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 10:636–643PubMedCrossRefGoogle Scholar
  40. Ortega-Mayagoitia E, Rojo C, Rodrigo MA (2003) Controlling factors of phytoplankton assemblages in wetlands: an experimental approach. Hydrobiologia 502:177–186CrossRefGoogle Scholar
  41. Perez-Ruzafa A, Diego CM (1993) La teoría del confinamiento como modelo para explicar la estructura y zonación horizontal de las comunidades bentónicas en las lagunas costeras. Publ Espec Inst Esp Oceanogr 11:347–358Google Scholar
  42. Pérez-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475–476:359–369CrossRefGoogle Scholar
  43. Quintana XD, Moreno-Amich R, Comín FA (1998) Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part I. Differential confinement of nutrients. J Plankton Res 20:2089–2107CrossRefGoogle Scholar
  44. Quintana XD, Badosa A, Gesti J (2001) LIFE Project. Restoration and regulation of the lagoons and coastal systems of the Lower Ter. 8-11-2004. On line.
  45. Rodríguez J, Jiménez-Gómez F, Blanco JM, Figueroa FL (2002) Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica). Deep Sea Res (II Top Stud Oceanogr) 49:693–706CrossRefGoogle Scholar
  46. Ruttner-Kolisko A (1977) Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol–Beih Ergebn Limnol 8:71–76Google Scholar
  47. Schönborn W (1992) Comparative studies on the production Biology of protozona communities in freshwater and soil ecosystems. Arch Protistenkd 141:187–214Google Scholar
  48. Serrano L, Burgos MD, Díaz-Espejo A, Toja J (1999) Phosphorus inputs to wetlands following storm events after drought. Wetlands 19:318–326CrossRefGoogle Scholar
  49. Smock LA (1980) Relationships between body size and biomass of aquatic insects. Freshw Biol 10:375–383CrossRefGoogle Scholar
  50. Sommer U, Sommer F, Santer B, Jamieson C, Boersma M, Becker C, Hansen T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:550CrossRefGoogle Scholar
  51. Sprules WG, Goyke AP (1994) Size-based structure and production in the pelagia of lakes Ontario and Michigan. Can J Fish Aquat Sci 51:2603–2611CrossRefGoogle Scholar
  52. Sprules WG, Stockwell JD (1994) Size-based biomass and production models in the St Lawrence Great Lakes. ICES J Mar Sci 52:705–710CrossRefGoogle Scholar
  53. Stal LJ (2000) Cyanobacterial mats and stromatolites. The ecology of cyanobacteria. Their diversity in time and space. Kluwer, The Netherlands, pp 62–108Google Scholar
  54. Stoecker DK (1999) Mixotrophy among dinoflagellates. Eukaryot Microbiol 46:397–401CrossRefGoogle Scholar
  55. Stoecker DK, Li A, Coats DW, Gustafson DE, Nannen MK (1997) Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar Ecol Prog Ser 152:1–12CrossRefGoogle Scholar
  56. Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118CrossRefGoogle Scholar
  57. Throndsen J (1995) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 63–80Google Scholar
  58. Utermöhl H (1931) Über das umgekehrte Mikroskop. Arch Hydrobiol 22:643–645Google Scholar
  59. Vanni MJ, Layne CD, Arnott SE (1997) “Top-down” trophic interactions in lakes: effects of fish on nutrients dynamics. Ecology 78:1–20Google Scholar
  60. Vidondo B, Prairie YT, Blanco JM, Duarte CM (1997) Some aspects of the analysis of the size spectra in aquatic ecology. Limnol Oceanogr 42:184–192CrossRefGoogle Scholar
  61. Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  62. Winiwarter P, Cempel C (1992) Life symptoms: the behaviour of open systems with limited energy dissipation capacity and evolution. Syst Res 9:9–34CrossRefGoogle Scholar
  63. Yentsch CS, Phinney DA (1984) Observed changes in spectral signatures of natural phytoplankton population: the influence of nutrients availability. In: Holm-Hansen O, Bolis L, Gilles R (eds) Physiological ecology of phytoplankton. Springer, Berlin Heidelberg New York, pp 95–128Google Scholar
  64. Zapata M, Garrido JL (1991) Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 31:589–594CrossRefGoogle Scholar
  65. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rocío López-Flores
    • 1
    Email author
  • Dani Boix
    • 1
  • Anna Badosa
    • 1
  • Sandra Brucet
    • 1
  • Xavier D. Quintana
    • 1
  1. 1.Institute of Aquatic Ecology and Department of Environmental Sciences, Facultat de CiènciesUniversity of GironaGironaSpain

Personalised recommendations