Marine Biology

, 149:491 | Cite as

Cryptic species and population structuring of the Atlantic and Pacific seabob shrimp species, Xiphopenaeus kroyeri and Xiphopenaeus riveti

  • J. Gusmão
  • C. Lazoski
  • F. A. Monteiro
  • A. M. Solé-Cava
Research Article

Abstract

Seabob shrimps of the genus Xiphopenaeus are important fishery resources along the Atlantic and Pacific coasts of Central and South America. The genus was considered to comprise two species: the Atlantic Xiphopenaeus kroyeri (Heller, Sitzungsber Math Naturwiss cl kaiserliche Akad Wiss Wien 45:389–426, 1862), and the Pacific Xiphopenaeus riveti (Bouvier, Bull Mus Hist Nat Paris 13:113–116, 1907). In a recent review, Xiphopenaeus was regarded as a monotypic genus, on the basis that no clear morphological differences could be found between Pacific and Atlantic specimens (Pérez Farfante and Kensley, Mem Mus Nat Hist Nat Paris 175:1–79, 1997). In the present work, nuclear (allozymes), and mitochondrial (Cytochrome Oxidase I) genes were used to demonstrate the validity of X. riveti and reveal the presence of two cryptic species of Xiphopenaeus within X. kroyeri in the Atlantic Ocean. The high levels of molecular divergence among these species contrast with their high morphological resemblance. Interspecific sequence divergences (Kimura 2-parameter distance) varied from 0.106 to 0.151, whereas intraspecific distances ranged from 0 to 0.008 in Xiphopenaeus sp. 1, from 0 to 0.003 in Xiphopenaeus sp. 2, and from 0.002 to 0.005 in X. riveti. In addition, five diagnostic allozyme loci were found between sympatric samples of Xiphopenaeus sp. 1 and 2 along the Brazilian coast. The results suggest that Xiphopenaeus sp. 2 from the Atlantic is more closely related to the Pacific X. riveti than to the Atlantic Xiphopenaeus sp. 1. Furthermore, a high level of genetic structuring (Xiphopenaeus sp. 1: FST=0.026; P<0.05; Xiphopenaeus sp. 2: FST=0.055; P<0.01) was found in the Brazilian Xiphopenaeus populations, indicating the presence of different genetic stocks in both Atlantic species. These findings have important commercial implications as they show that the fisheries of the two Atlantic species must be managed separately, and that each one is comprised of different populations.

References

  1. Baldwin JD, Bass AL, Bowen BW, Clark WH (1998) Molecular phylogeny and biogeography of the marine shrimp Penaeus. Mol Phylogenet Evol 10:399–407CrossRefPubMedGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  3. Bouvier EL (1907) Crustacés Décapodes nouveaux recueillis a Païta (Perú) par M. le Dr. Rivet. Bull Mus Hist Nat Paris 13:113–116Google Scholar
  4. Brewer GJ (1970) An introduction to isozyme techniques. Academic Press, NYGoogle Scholar
  5. Castro RH, Costa RC, Fransozo A, Mantelatto FLM (2005) Population structure of the seabob shrimp Xiphopenaeus kroyeri (Heller 1862) (Crustacea: Penaeoidea) in the littoral of São Paulo, Brazil. Sci Mar 69:105–112Google Scholar
  6. Damato ME, Corach D (1994) Genetic diversity of populations of the fresh-water shrimp Macrobrachium borellii (Caridea, Palaemonidae) evaluated by RAPD analysis. J Crust Biol 16:650–655CrossRefGoogle Scholar
  7. Efron B (1981) Nonparametric estimates of standard error—the jackknife, the boostrap and other resampling methods. Biometrika 68:589–599CrossRefGoogle Scholar
  8. Fabricius JC (1798) Suplementum entomologiae systematicae. Proft and Storch, Hafniae, p 572Google Scholar
  9. FAO (2005) Fishstat Plus 2.30: Universal software for fishery statistical time series. Fisheries Department, Fishery information, Data and statistics unitGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Gusmão J, Lazoski C, Solé-Cava AM (2000) A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analyses. Mar Biol 137:435–446CrossRefGoogle Scholar
  13. Gusmão J, Solé-Cava AM (2002) Um sistema de diagnóstico molecular para a identificação de espécies comerciais de camarões marinhos brasileiros. In: Blas I (ed) CIVA 2002: Comunicaciones y Foros de Discusión. Primer Congreso Iberoamericano Virtual de Acuicultura. (http://www.civa2002.org). Zaragosa, pp 754–764
  14. Heller C (1862) Beiträge zur näharen Kenntnis der Macruoren. Sitzungsber Math Naturwiss cl kaiserliche Akad Wiss Wien 45:389–426, plates 1–2Google Scholar
  15. Hoelzel AR, Green A (1992) Analysis of population-level variation by sequencing PCR-amplified DNA. In: Hoelzel AR (eds) Molecular Genetic Analysis of Populations. Oxford University Press, Oxford, pp 159–188Google Scholar
  16. Hualkasin W, Sirimontaporn P, Chotigeat W, Querci J, Phongdara A (2003) Molecular phylogenetic analysis of white prawn species and the existence of two clades in Penaeus merguiensis. J exp mar Biol Ecol 296:1–11CrossRefGoogle Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  18. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257–2263CrossRefGoogle Scholar
  19. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. In: Solé-Cava AM, Russo CAM, Thorpe JP (eds) Marine genetics. Kluwer, Dordrecht, pp 73–90Google Scholar
  20. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  21. Lavery S, Chan TY, Tam YK, Chu KH (2004) Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Mol Phylogenet Evol 31:39–49CrossRefPubMedGoogle Scholar
  22. Lester LJ (1983) Developing a selective breeding program for penaeid shrimp mariculture. Aquaculture 33:41–50CrossRefGoogle Scholar
  23. Manchenko GP (1994) Handbook of detection of enzymes on electrophoretic gels. CRC Press Inc, MIGoogle Scholar
  24. Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021PubMedGoogle Scholar
  25. McDonald JH, Kreitman M (1991) Neutral mutation hypothesis test. Nature 354:116–116CrossRefGoogle Scholar
  26. Mulley JC, Latter BDH (1980) Genetic variation and evolutionary relationships within a group of thirteen species of penaeid prawns. Evolution 34:904–916CrossRefGoogle Scholar
  27. Murphy RW, Sites JW, Buth DG, Haufler CH (1990) Proteins I. Isozyme electrophoresis. In: Hillis DM, Moritz C (eds) Molecular Systematics. Sinauer Associates, MA, pp 45–126Google Scholar
  28. Nakagaki JM, Negreiros-Fransozo ML (1998) Population biology of Xiphopenaeus kroyeri (Heller 1862) (Decapoda: Penaeidae) from Ubatuba Bay, São Paulo, Brazil. J Shellfish Res 17:931–935Google Scholar
  29. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  30. Neto JD, Dornelles LDC (1996) Diagnóstico da pesca marítima do Brasil. Coleção Meio Ambiente (Série Estudos—Pesca 20) IBAMA, BrasíliaGoogle Scholar
  31. Ota T (1993) DISPAN: Genetic distance and phylogenetic analysis. Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, PYGoogle Scholar
  32. Paiva MP, Bezerra RC, Fonteles-Filho AA (1971) Tentativa de avaliação dos recursos pesqueiros do nordeste brasileiro. Arq Ciênc Mar Fortaleza 11:1–43Google Scholar
  33. Palumbi SR, Benzie J (1991) Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol Mar Biol Biotechnol 1:27–34PubMedGoogle Scholar
  34. Pérez Farfante I, Kensley B (1997) Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Mem Mus Nat Hist Nat Paris 175:1–79Google Scholar
  35. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  36. Quan J, Zhuang Z, Deng J, Dai J, Zhang YP (2004) Phylogenetic relationships of 12 Penaeoidea shrimp species deduced from mitochondrial DNA sequences. Biochem Genet 42:331–345CrossRefPubMedGoogle Scholar
  37. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  38. Saitou N, Nei M (1987) The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  39. Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem Genet 4:297–320CrossRefPubMedGoogle Scholar
  40. Smith S (1869) Notice of the Crustacea collected by Prof. C.F. Hartt on the coast of Brazil in 1867. Trans Conn Acad Sci 2:1–42Google Scholar
  41. Sneath PHA, Sokal RR (1973) Numerical taxonomy. WH Freeman, San Francisco, USAGoogle Scholar
  42. Sunden SLF, Davis SK (1991) Evaluation of genetic variation in a domestic population of Penaeus vannamei (Boone): a comparison with three natural populations. Aquaculture 97:131–142CrossRefGoogle Scholar
  43. Swofford DL (1998) PAUP. Phylogenetic analysis using parsimony, Version 4 Sinauer, Sunderland, MAGoogle Scholar
  44. Swofford DL, Selander RB (1981) BIOSYS-1, a FORTRAN programme for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283Google Scholar
  45. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882CrossRefPubMedGoogle Scholar
  47. Thorpe JP, Solé-Cava AM, Watts PC (2000) Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420:165–184CrossRefGoogle Scholar
  48. Voloch C, Solé-Cava AM (2005) Genetic structure of the sea-bob shrimp (Xiphopenaeus kroyeri Heller 1862; Decapoda: Penaeidae) along the Brazilian Southeastern coast. Gen Mol Biol 28:257–257Google Scholar
  49. Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400CrossRefGoogle Scholar
  50. Ward RD, Beardmore JA (1977) Protein variation in the plaice (Pleuronectes platessa). Gen Res 30:45–62CrossRefGoogle Scholar
  51. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Gusmão
    • 1
    • 2
  • C. Lazoski
    • 1
  • F. A. Monteiro
    • 3
  • A. M. Solé-Cava
    • 1
    • 4
  1. 1.Departamento de Genética, Laboratório de Biodiversidade Molecular, Instituto de BiologiaUFRJRio de JaneiroBrazil
  2. 2.Departamento de Biologia Celular e Genética, Laboratório de Genética Marinha, Instituto de Biologia Roberto Alcântara GomesUERJRio de JaneiroBrazil
  3. 3.Departamento de Medicina TropicalInstituto Oswaldo CruzRio de JaneiroBrazil
  4. 4.Department of Environmental and Evolutionary Biology, Port Erin Marine LaboratoryUniversity of LiverpoolIsle of ManUnited Kingdom

Personalised recommendations