Advertisement

Marine Biology

, Volume 148, Issue 4, pp 683–691 | Cite as

Nodularin accumulation during cyanobacterial blooms and experimental depuration in zooplankton

  • Miina Karjalainen
  • Betina Kozlowsky-Suzuki
  • Maiju Lehtiniemi
  • Jonna Engström-Öst
  • Harri Kankaanpää
  • Markku Viitasalo
Research Article

Abstract

Cyanobacterial blooms are a common phenomenon in the Baltic Sea, and the hepatotoxin nodularin has been frequently detected in certain Baltic Sea fishes and mussels. However, there is no knowledge about the naturally occurring concentrations of nodularin in Baltic Sea zooplankton. The aim of this study was to survey the concentrations of nodularin in natural zooplankton assemblages, and to study the depuration of nodularin in one common copepod species, Eurytemora affinis, experimentally. The nodularin concentrations in common zooplankton species were determined from field-collected samples from the northern Baltic Proper in 2001 and 2002, during cyanobacterial blooms, and the samples were analysed by ELISA immunoassay. Nodularin could be detected from the field-collected zooplankton, suggesting that during a natural bloom event toxins accumulate in their tissues. The concentrations were relatively low (0.07±0.01 μg g−1 ww), ranging from below detection limit to 0.62 μg g−1 ww. Some variation occurred in the concentrations between species and years; generally concentrations were higher in 2001 than in 2002. In the depuration experiment E. affinis copepods were fed with toxic Nodularia spumigena for 24 h, and their toxin contents were monitored for 24 h after transferring them to filtered seawater. A rapid decrease in nodularin concentrations occurred during the first 0.5–3 h after the exposure. However, after a 24-h depuration period in filtered seawater, nodularin could be still detected in E. affinis tissues, indicating that part of the accumulated nodularin, or its derivatives, could be transferred to planktivores.

Keywords

Phytoplankton Cyanobacterial Bloom Zooplankton Species Copepod Species Planktivorous Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Prof. Kaarina Sivonen (University of Helsinki) is acknowledged for providing the Nodularia spumigena strain AV1; Eveliina Lindén, Sanna Rönkkönen and Hermanni Backer for help with collecting the zooplankton samples during summer 2002; Maija Huttunen and Emil Vahtera for counting the phytoplankton samples; and Jari-Pekka Pääkkönen for help in calculations. Marko Reinikainen and Marja Koski gave valuable comments on the manuscript. This study was financed by Walter and Andrée de Nottbeck Foundation, Maj and Tor Nessling Foundation, Finnish Cultural Foundation, the Academy of Finland (grant number 50679) and the Brazilian National Council for Research (CNPq). Two anonymous referees are acknowledged for constructive criticism.

References

  1. Bury NR, Newlands AD, Eddy FB, Codd GA (1998) In vivo and in vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhyncus mykiss). Aquat Toxicol 42:139–148CrossRefGoogle Scholar
  2. Burris JE (1980) Vertical migration of zooplankton in the Gulf of Finland. Am Midland Nat 103:316–322CrossRefGoogle Scholar
  3. Engström J, Koski M, Viitasalo M, Reinikainen M, Repka S, Sivonen K (2000) Feeding interactions of Eurytemora affinis and Acartia bifilosa with toxic and non-toxic Nodularia sp. J Plankton Res 22:1403–1409CrossRefGoogle Scholar
  4. Engström-Öst J, Lehtiniemi M, Green S, Kozlowsky-Suzuki B, Viitasalo M (2002) Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? J Exp Mar Biol Ecol 276:95–107CrossRefGoogle Scholar
  5. Ferrao-Filho AS, Kozlowsky-Suzuki B, Azevedo SMFO (2002) Accumulation of microcystins by a tropical zooplankton community. Aquat Toxicol 59:201–208CrossRefGoogle Scholar
  6. Flinkman J, Are E, Vuorinen I, Viitasalo M (1998) Changes in northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Mar Ecol Prog Ser 165:127–136CrossRefGoogle Scholar
  7. Gasparini S, Castel J (1997) Autotrophic and heterotrophic nanoplankton in the diet of the estuarine copepods Eurytemora affinis and Acartia bifilosa. J Plankton Res 19:877–890CrossRefGoogle Scholar
  8. Kahru M, Horstmann U, Rud O 1994: Satellite detection of increased cyanobacteria blooms in the Baltic Sea—natural fluctuation or ecosystem change. Ambio 23:469–472Google Scholar
  9. Kankaanpää HT, Sipiä VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 40:268–274CrossRefGoogle Scholar
  10. Kankaanpää H, Vuorinen PJ, Sipiä V, Keinänen M (2002) Acute effects of Nodularia spumigena and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) under laboratory conditions. Aquat Toxicol 61:155–168CrossRefGoogle Scholar
  11. Kankaanpää HT, Holliday J, Schröder H, Goddard TJ, von Fister R, Carmichael WW (2005) Cyanobacteria and prawn farming in northern New South Wales, Australia—a case study on cyanobacteria diversity and hepatotoxin bioaccumulation. Toxicol Appl Pharmacol 203:243–256CrossRefGoogle Scholar
  12. Karjalainen M, Reinikainen M, Lindvall F, Spoof L, Meriluoto JAO (2003) Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton. Environ Toxicol 18:52–60CrossRefGoogle Scholar
  13. Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20:354–362CrossRefGoogle Scholar
  14. Karlsson KM, Kankaanpää H, Huttunen M, Meriluoto J (2005) First observation of microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae 4:163–166CrossRefGoogle Scholar
  15. Kim SW, Onbé T, Yoon YH (1989) Feeding habits of marine cladocerans in the Inland Sea of Japan. Mar Biol 100:313–318CrossRefGoogle Scholar
  16. Kononen K, Sivonen K, Lehtimäki J (1993) Toxicity of phytoplankton blooms in the Gulf of Finland and Gulf of Bothnia, Baltic Sea. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 269–273Google Scholar
  17. Kononen K, Kuparinen J, Mäkelä K, Laanemets J, Pavelson J, Nõmmann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41:98–112CrossRefGoogle Scholar
  18. Koski M, Engström J, Viitasalo M (1999) Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar Ecol Prog Ser 186:187–197CrossRefGoogle Scholar
  19. Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jónasdóttir S, Repka S, Sivonen K (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885CrossRefGoogle Scholar
  20. Kotak BG, Zurawell RW, Prepas EE, Holmes CFB (1996) Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can J Fish Aquat Sci 53:1974–1985CrossRefGoogle Scholar
  21. Kozlowsky-Suzuki B, Karjalainen M, Lehtiniemi M, Engström-Öst J, Koski M, Carlsson P (2003) Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia spumigena. Mar Ecol Prog Ser 249:237–249CrossRefGoogle Scholar
  22. Kozlowsky-Suzuki B (2004): Effects of toxin-producing phytoplankton on copepods: feeding, reproduction and implications to the fate of toxins. PhD Thesis, Lund University, 118 pGoogle Scholar
  23. Magalhães VF, Moraes Soares R, Azevedo SMFO (2001) Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39:1077–1085CrossRefGoogle Scholar
  24. Metcalf JS, Beattie KA, Pflughmacher S, Codd GA (2000) Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin-LR. FEMS Microbiol Lett 189:155–158CrossRefGoogle Scholar
  25. Meyer-Harms B, Reckermann M, Voβ M, Siegmund H, von Bodungen B (1999) Food selection by calanoid copepods in the euphotic layer of the Gotland Sea (Baltic Proper) during mass-occurrences of N2-fixing cyanobacteria. Mar Ecol Prog Ser 191:243–250CrossRefGoogle Scholar
  26. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumour promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118:420–424CrossRefGoogle Scholar
  27. Lehtiniemi M, Engström-Öst J, Karjalainen M, Kozlowsky-Suzuki B, Viitasalo M (2002) Fate of cyanobacterial toxins in the pelagic food web: transfer to copepods or to faecal pellets? Mar Ecol Prog Ser 241:13–21CrossRefGoogle Scholar
  28. Ojaveer H, Kuhns LA, Barbiero RP, Tuchman ML (2001) Distribution and population characteristics of Cercopagis pengoi in Lake Ontario. J Great Lakes Res 27:10–18CrossRefGoogle Scholar
  29. Raid T, Lankov A (1995) Recent changes in the growth and feeding of Baltic herring and sprat in the northeastern Baltic Sea. Proc Est Acad Sci Ecol 5:38–55Google Scholar
  30. Reinikainen M, Lindvall F, Meriluoto JAO, Repka S, Sivonen K (2002) Effects of cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods. Mar Biol 140:577–583CrossRefGoogle Scholar
  31. Rudstam LG, Hansson S, Johansson S, Larsson U (1992) Dynamics of planktivory in a coastal area of the northern Baltic Sea. Mar Ecol Prog Ser 80:159–173CrossRefGoogle Scholar
  32. Sellner KG, Olson MM, Kononen K (1994) Copepod grazing in a summer cyanobactreia bloom in the Gulf of Finland. Hydrobiologia 292/293:249–254CrossRefGoogle Scholar
  33. Sipiä VO, Kankaanpää H, Flinkman J, Lahti K, Meriluoto JAO (2001a) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichtys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16:330–336CrossRefGoogle Scholar
  34. Sipiä V, Kankaanpää H, Lahti K, Carmichael WW, Meriluoto J (2001b) Detection of nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16:121–126CrossRefGoogle Scholar
  35. Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002a) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotoxicol Environ Saf 53:305–311CrossRefGoogle Scholar
  36. Sipiä VO, Lahti K, Kankaanpää HT, Vuorinen PJ, Meriluoto JAO (2002b) Screening for cyanobacterial hepatotoxins in herring and salmon from the Baltic Sea. Aquatic Ecosyst Health Manage 5:451–456CrossRefGoogle Scholar
  37. Sipiä VO, Karlsson KM, Meriluoto JAO, Kankaanpää H (2003) Eiders (Somateria mollissima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web. Environ Toxicol Chem 23:1256–1260CrossRefGoogle Scholar
  38. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in the water. E & FN Spon, London, pp 41–111Google Scholar
  39. Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart K, Kiviranta J, Niemelä SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and the structure of the toxin. Appl Environ Microbiol 55:1990–1995PubMedPubMedCentralGoogle Scholar
  40. Thostrup L, Christoffersen K (1999) Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis. Arch Hydrobiol 145:447–467CrossRefGoogle Scholar
  41. Uitto A, Gorokhova E, Välipakka P (1999) Distribution of the non-indigenous Cercopagis pengoi in the coastal waters of the eastern Gulf of Finland. ICES J Mar Sci 56(Suppl):49–57CrossRefGoogle Scholar
  42. Vanderploeg HA, Cavaletto JF, Liebig JR, Gardner WS (1998) Limnocalanus macrurus (Copepoda:Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J Plankton Res 20:1581–1597CrossRefGoogle Scholar
  43. Vihervuori A, Ahvonen A (1997) Miten kalankulutusta arvioidaan? Kalavirrat - tietoa kalan tarjonnasta ja käytöstä. Riista- ja kalatalouden tutkimuslaitos (in Finnish). SVT-Ympäristö 1997:13. pp 34–39Google Scholar
  44. Ward CJ, Lee EYC, Beattie KA, Codd GA (1998) Colorimetric protein phosphatase inhibition assay for microcystins and nodularin in laboratory cultures and natural blooms of cyanobacteria. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Proceedings of VIII international conference harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 541–544Google Scholar
  45. Watanabe MM, Kaya K, Takamura N (1992) Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (Cyanobacteria) in a hypertrophic lake. J Phycol 28:761–767CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Miina Karjalainen
    • 1
  • Betina Kozlowsky-Suzuki
    • 2
    • 3
  • Maiju Lehtiniemi
    • 1
  • Jonna Engström-Öst
    • 1
  • Harri Kankaanpää
    • 1
  • Markku Viitasalo
    • 1
  1. 1.Finnish Institute of Marine ResearchHelsinkiFinland
  2. 2.Department of Environmental ScienceUniversity of KalmarKalmarSweden
  3. 3.Departamento de Ciências NaturaisUniversidade Federal do Estado do Rio de Janeiro – UNIRIORio de JaneiroBrasil

Personalised recommendations