Advertisement

Marine Biology

, Volume 148, Issue 1, pp 179–188 | Cite as

Genetic homogeneity in eight freshwater populations of Sicyopterus lagocephalus, an amphidromous gobiid of La Réunion Island

  • Patrick Berrebi
  • Ghislaine Cattaneo-Berrebi
  • Pierre Valade
  • Jean-François Ricou
  • Thierry Hoareau
Research Article

Abstract

In the subfamily Sicydiinae of the family Gobiidae, the species Sicyopterus lagocephalus is one of the common amphidromous fish inhabiting island freshwaters in a large intertropical area, widespread from the Comoros archipelago to the Austral Islands. Eight of the main perennial rivers of La Réunion Island (Mascarene Islands) were sampled in 2000, in order to describe their population genetic structure. A total of 267 adult specimens of S. lagocephalus were screened for 14 enzymatic systems providing 15 presumptive loci, 11 of them being polymorphic. Four other loci were useful as diagnostic markers between S. lagocephalus and Cotylopus acutipinnis, a similar, closely related sympatric species. Both species constitute an economic resource locally called “bichique”. The focus of this study, S. lagocephalus, accounts for the majority of the bichique. The results clearly showed a genetic homogeneity among the eight samples (Fst tests). Within-samples tests (Fis) indicated, in general, a heterozygote deficiency. The multidimensional diagrams (CA) describe an overall structure composed of two main subgroups. This structure was not confirmed in a 2001 sampling. The interpretation of the results takes into account the biological life cycle of this species, characterized by a planktonic phase, from hatching to recruitment, followed by a freshwater life of the adults. All the samples in the survey belong to a single pool. However, the young fish entering the rivers are probably of complex origin. We did not find any isolation between rivers and this result should be considered when conservation measures are taken to prevent overfishing.

Keywords

Negative Group Positive Group River Sample Heterozygote Deficiency Heterozygote Excess 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Pierre Bosc, Henri-Paul Grondin and Yannick Zitte for the organization of the fishing trips; the ARDA association and the GIP-ECOFOR (French Ecology Ministry) for financial help; Giacomo Bernardi and Philippe Keith for comments on the manuscript; Torben Meldgaard and Robert Britton for linguistic help.

References

  1. Bakun A, Cury P (1999) The “school trap”: a mechanism promoting large-amplitude out-of-phase population oscillations of small pelagic fish species. Ecol Lett 2:349–351CrossRefGoogle Scholar
  2. Balon EK, Bruton MN (1994) Fishes of the Tatinga River, Comoros, with comments on freshwater amphidromy in the goby Sicyopterus lagocephalus. Ichtyol Explor Freshw 5:25–40Google Scholar
  3. Belkhir K, Bonhomme F (2002) PartitionML: a maximum likelihood estimation of the best partition of a sample into panmictic units http://www.univ-montp2.fr/%7Egenetix/partitionml.htm
  4. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1998) GENETIX, logiciel sous WindowsTM pour la génétique des populations. http://www.univ-montp2.fr/~genetix/genetix.htm. Laboratoire Génome et Populations, CNRS UPR 9060, Université Montpellier II, Montpellier, France
  5. Bell KNI (1999) An overview of goby-fry fisheries. Naga, ICLARM Q Bull 22:30–36Google Scholar
  6. Benzecri JP (1973) L’analyse des données. Dunod, ParisGoogle Scholar
  7. Berrebi P, Valiushok D (1998) Genetic divergence among morphotypes of Lake Tana (Ethiopia) barbs. Biol J Linn Soc 64:369–384CrossRefGoogle Scholar
  8. Bonhomme F, Planes S (2000) Some evolutionary arguments about what maintains the pelagic interval in reef fishes. Environ Biol Fish 59:365–383CrossRefGoogle Scholar
  9. Borkin IV (1991) Ichthyoplankton of western Spitzbergen coastal waters. J Ichthyol 31:680–685Google Scholar
  10. Castric V, Bernatchez L, Belkhir K, Bonhomme F (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89:27–35CrossRefGoogle Scholar
  11. Chubb AL, Zink RM, Fitzsimons JM (1998) Patterns of mtDNA variation in Hawaiian freshwater fishes: the phylogeographic consequences of amphidromy. J Hered 89:8–16CrossRefGoogle Scholar
  12. Cowen RK, Hare JA, Fahay MP (1993) Beyond hydrography: can physical processes explain larval fish assemblages within Middle Atlantic Bight? Bull Mar Sci 53:567–587Google Scholar
  13. Fisher R, Bellwood DR, Job SD (2000) Development of swimming abilities in reef fish larvae. Mar Ecol Prog Ser 202:163–173CrossRefGoogle Scholar
  14. Fitzsimons JM, Zink RM, Nishimoto RT (1990) Genetic variation in the Hawaiian stream goby, Lentipes concolor. Biochem Syst Ecol 18:81–83CrossRefGoogle Scholar
  15. Guinand B (1996) Use of a multivariate model using allele frequency distribution to analyse patterns of genetic differentiation among populations. Biol J Linn Soc 58:173–195CrossRefGoogle Scholar
  16. Hare JA, Cowen RK (1996) Transport mechanisms of larval and pelagic juvenile bluefish (Pomatomus saltatrix) from South Atlantic Bight spawning grounds to Middle Atlantic Bight nursery habitats. Limnol Oceanogr 41:1264–1280CrossRefGoogle Scholar
  17. Hedrick PW (1983) Genetics of populations. Science Books Intl., Boston, MA, USAGoogle Scholar
  18. Henson R (2001) Glossary of meteorology. AMS, Washington, USAGoogle Scholar
  19. Hoareau T, Lecomte-Finiger R, Bosc P, Berrebi P (2004) Surprising larval life duration of Sicyopterus and Cotylopus gobiids in Mascarene Islands Poster au. In: Third international symposium on fish otolith research and application, Townsville, Queensland, Australia, 11–16 July 2004Google Scholar
  20. Keith P (2002) Freshwater fish and decapod crustacean populations on Réunion Island, with an assessment of species introductions. Bull Français de Pêche et Piscicult 364:97–107CrossRefGoogle Scholar
  21. Keith P (2003) Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J Fish Biol 63:831–847CrossRefGoogle Scholar
  22. Lecchini D, Galzin R (2003) Synthèse sur l’influence des processus pélagiques et benthiques, biotiques et abiotiques, stochastiques et déterministes, sur la dynamique de l’autorecrutement des poissons coralliens. Cybium 27:167–184Google Scholar
  23. Leis MJ, Carson-Ewart BM (1997) In situ swimming speeds of the late pelagic larvae of some Indo-Pacific coral-reef fishes. Mar Ecol Prog Ser 159:165–174CrossRefGoogle Scholar
  24. Manacop PR (1953) The life history and habits of the goby, Sicyopterus extraneus Herre (Anga) Gobiidae, with an account of the goby fry fishery of Cagayan River, Oriental Misamis. Philipp J Fish 2:1–60Google Scholar
  25. McDowall RM (1999) Driven by diadromy: its role in the historical and ecological biogeography of the New Zealand freshwater fish fauna. Ital J Zool 65 (Suppl 5):73–85Google Scholar
  26. McDowall RM (2003) Hawaiian biogeography and the islands’ freshwater fish fauna. J Biogeogr 30:703–710CrossRefGoogle Scholar
  27. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  28. Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1987) Manuel de génétique par électrophorèse des protéines. Lavoisier, ParisGoogle Scholar
  29. Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  30. She JX, Autem M, Kotoulas G, Pasteur N, Bonhomme F (1987) Multivariate analysis of genetic exchanges between Solea aegyptiaca and Solea senegalensis (Teleosts, Soleidae). Biol J Linn Soc 32:357–371CrossRefGoogle Scholar
  31. Smouse PE, Waples RS, Tworek JA (1990) A genetic mixture analysis for use with incomplete source population data. Can J Fish Aquat Sci 47:620–634CrossRefGoogle Scholar
  32. Sparks JS, Stiassny MLJ (2003) Introduction to the freshwater fishes. In: Goodmann SM, Benstead JP (eds) The natural history of Madagascar. University of Chicago Press, Chicago, IL, USA, pp 849–863Google Scholar
  33. Stobutski IC, Bellwood DR (1997) Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar Ecol Prog Ser 149:35–41CrossRefGoogle Scholar
  34. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar
  35. Watson RE (1995) Gobies of the genus Stiphodon from French Polynesia, with descriptions of two new species (Teleostei: Gobiidae: Sicydiinae). Ichthyol Explor Freshw 6:33–48Google Scholar
  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  37. Williams DMB, Wolanski E, Andrews JC (1984) Transport mechanisms and their potential movement of planktonic larvae in the central region of Great Barrier Reef. Coral Reefs 3:229–236CrossRefGoogle Scholar
  38. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Patrick Berrebi
    • 1
  • Ghislaine Cattaneo-Berrebi
    • 1
  • Pierre Valade
    • 2
  • Jean-François Ricou
    • 2
  • Thierry Hoareau
    • 1
    • 2
    • 3
  1. 1.Laboratoire Ecosystèmes Lagunaires, UMR 5119, cc093University Montpellier 2 place BataillonCedex 05France
  2. 2.Association Réunionnaise pour le Développement de l’Aquaculture—Centre des Eaux DoucesLa RéunionFrance
  3. 3.Laboratoire d’Ecologie MarineUniversité de La RéunionSaint-Denis mes., Cedex 9France

Personalised recommendations