Advertisement

Marine Biology

, Volume 148, Issue 1, pp 123–130 | Cite as

Fate of domoic acid ingested by the copepod Acartia clausi

  • Isabel Maneiro
  • Paula Iglesias
  • Cástor Guisande
  • Isabel Riveiro
  • Aldo Barreiro
  • Soultana Zervoudaki
  • Edna Granéli
Research Article

Abstract

Two important issues in the studies of harmful algae include ecological role of the toxic compounds and their fate through the food web. The aims of this study were to determine whether the production of domoic acid is a strategy evolved to avoid predation and the role of copepods in the fate of this toxic compound through the food web. The copepod Acartia clausi was fed with single and mixed cultures of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschiadelicatissima. Ingestion rate as a function of diatom abundance was the same for the toxic and non-toxic Pseudo-nitzschia species, indicating no selective feeding behaviour against P. multiseries. The toxins ingested by the copepods did not affect mortality, feeding behaviour, egg production and egg hatching of the copepods. Copepods assimilated the 4.8% of the total domoic acid ingested. Although the amount of toxins daily detoxificated by the copepods was 63.6%, the copepods accumulated domoic acid in their tissues. We conclude that domoic acid is not toxic for copepods and, probably for this reason, this toxin does not act as feeding deterrent for copepods. However, even though the production of domoic acid has apparently not evolved to deter predation, copepods may play an important role on the fate of this toxic compound through the marine food web.

Keywords

Phytoplankton Domoic Acid Toxin Concentration Toxin Content Toxin Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are very grateful to the crew of R/V ‘J.M. Navaz’ (I.E.O.) for technical support and helpful assistance and to Jefferson Turner for English editing and constructive review. This research was supported by the project EVK3-CT2000-00055 and a FPU grant to A. Barreiro.

References

  1. Bagøien E, Miranda A, Reguera B, Franco JM (1996) Effects of two paralytic shellfish toxin producing dinoflagellates on the pelagic harpacticoid copepod Euterpina acutifrons. Mar Biol 126:361–369CrossRefGoogle Scholar
  2. Bargu S, Powell CL, Coale SL, Busman M, Doucette GJ, Silver MV (2002) A potential vector for domoic acid in marine food webs. Mar Ecol Prog Ser 237:209–216CrossRefGoogle Scholar
  3. Bargu S, Marinovic B, Mansergh S, Silver MW (2003) Feeding responses of krill to the toxin-producing diatom Pseudo-nitzschia. J Exp Mar Biol Ecol 284:87–104CrossRefGoogle Scholar
  4. Bates SS (1998) Ecophysiology and metabolism of ASP toxin production. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. NATO ASI Ser N°41, pp 405–426Google Scholar
  5. Blanco J, Moroño A, Franco J, Reyero MI (1997) PSP detoxification kinetics in the mussel Mytilus galloprovincialis One- and two-compartment models and the effect of some environmental variables. Mar Ecol Prog Ser 158:165–175CrossRefGoogle Scholar
  6. Blanco J, Acosta CP, Bermúdez de la Puente M, Salgado C (2002a) Depuration and anatomical distribution of the amnesic shellfish poisoning (ASP) toxin domoic acid in the king scallop Pecten maximus. Aquat Toxicol 60:111–121CrossRefGoogle Scholar
  7. Blanco J, Bermúdez de la Puente M, Arévalo F, Salgado C, Moroño A (2002b) Depuration of mussels (Mytilus galloprovinciallis) contaminated with domoic acid. Aquat Living Resour 15:53–60CrossRefGoogle Scholar
  8. Boyer GL, Sullivan JJ, Leblanc M, Anderson RJ (1985a) The assimilation of PSP toxins by the copepod Tigriopus californicus from dietary Protogonyaulax catenella. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, New York, pp 407–412Google Scholar
  9. Campbell DA, Kelly MS, Busman M, Wiggins E, Fernandes TF (2003) Impact of preparation method on gonad domoic acid levels in the scallop, Pecten maximus (L). Harmful Algae 2:215–222CrossRefGoogle Scholar
  10. Carlsson P, Granéli E, Finenko G, Maestrini SY (1995) Copepod grazing on a phytoplankton community containing the toxic dinoflagellate Dinophysis acuminata. J Plankton Res 17:1925–1938CrossRefGoogle Scholar
  11. Colin SP, Dam HG (2003) Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar Ecol Prog Ser 248:55–65CrossRefGoogle Scholar
  12. Donaghay PL, Small LF (1979) Food selection capabilities of the estuarine copepod Acartia clausi. Mar Biol 52:137–146CrossRefGoogle Scholar
  13. Falk M, Seto PF, Water JA (1991) Solubility of domoic acid in water and in non-aqueous solvents. Can J Chem 69:1740–1744CrossRefGoogle Scholar
  14. Fraga S, Alvárez MJ, Míguez A, Fernández ML, Costas E, López-Rodas V (1998) Pseudo-nitzschia species isolated from Galician waters: toxicity, DNA content and lectin binding assay. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and the IOC of UNESCO, Paris, pp 270–273Google Scholar
  15. Frangópulos M, Guisande C, Maneiro I, Riveiro I, Franco J (2000) Short-term and long-term of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi. Mar Ecol Prog Ser 203:161–169CrossRefGoogle Scholar
  16. Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815CrossRefGoogle Scholar
  17. Guerrero F, Rodríguez V (1997) Estimates of secondary production in a co-existent group of Acartia species (Copepoda, Calanoida). Crustaceana 70:584–593CrossRefGoogle Scholar
  18. Guisande C, Frangópulos M, Carotenuto Y, Maneiro I, Riveiro I, Vergara AR (2002) Fate of paralytic shellfish poisoning toxins ingested by the copepod Acartia clausi. Mar Ecol Prog Ser 240:105–115CrossRefGoogle Scholar
  19. Hasle GR (2002) Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites? Harmful Algae 1:137–146CrossRefGoogle Scholar
  20. Huntley M, Sykes P, Rohan S, Marin V (1986) Chemically-mediated rejection of dinoflagellates prey by the copepods Calanus parvus: mechanism, occurrence and significance. Mar Ecol Prog Ser 28:105–120CrossRefGoogle Scholar
  21. Ives JD (1985) The relationship between Gonyaulax tamarensis cell toxin levels and copepod ingestion rates. In: Anderson DM, White AW, Baden DG (eds) Toxic Dinoflagellates. Elsevier, pp 413–418Google Scholar
  22. Ives JD (1987) Possible mechanism underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J Exp Mar Biol Ecol 112:131–145CrossRefGoogle Scholar
  23. Lapworth C, Hallegraeff GM, Ajani PA (2001) Identification of domoic-acid-producing Pseudo-nitzschia species in Australian waters. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewins RJ (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, pp 971–977Google Scholar
  24. Lassus P, Bardouil M, Massselin P, Naviner M, Truquet P (2000) Comparative efficiencies of different non-toxic microalgal diets in detoxification of PSP-contaminated oysters (Crassostrea gigas Thunberg). J Natural Tox 9:1–12Google Scholar
  25. Lincoln JA, Turner JT, Bates SS, Léger C, Gauthier DA (2001) Feeding, egg production and egg hatching success of the copepods Acartia tonsa and Temora longicornis on diets of the toxic diatom Pseudo-nitzschia multiseries and the non-toxic diatom Pseudo-nitzschia pungens. Hydrobiol 453/454:107–120CrossRefGoogle Scholar
  26. MacKenzie AL, White DA, Sim PG, Holland AJ (1993) Domoic acid and the New Zealand Greenshell mussel (Perna canaliculus) in toxic phytoplankton blooms in the sea. In: Smayda TJ, Shimizu Y (eds) Proceedings of the 5th International Conference on Toxic Marine Phytoplankton. Elsevier, Amsterdam, pp 607–612Google Scholar
  27. Maldonado MT, Hughes MP, Rue EL, Wells ML (2002) The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol Oceanogr 47:515–526CrossRefGoogle Scholar
  28. Maneiro I, Guisande C, Frangópulos M, Riveiro I (2002) Importance of copepod faecal pellets to the fate of the DSP toxins produced by Dinophysis spp. Harmful Algae 1:333–341CrossRefGoogle Scholar
  29. Miralto A., Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176CrossRefGoogle Scholar
  30. Quilliam MA, Wright JLC (1989) The amnesic shellfish poisoning mystery. Anal Chem 61:1053A–1063ACrossRefGoogle Scholar
  31. Rodríguez F, Pazos Y, Maneiro J, Fraga S, Zapata M (2001) HPLC pigment composition of phytoplankton populations during the development of Pseudo-nitzschia spp. Blooms. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewins RJ (eds) Harmful algal blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, pp 199–201Google Scholar
  32. Rue E, Bruland K (2001) Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Mar Chem 76:127–134CrossRefGoogle Scholar
  33. Scholin CA, Guilland F, Doucette GJ, Benson S, Busman M, Chavez FP, Cordaro J, DeLong R, Vogetaere AD, Harvey J, Haulena M, Lefebvre K, Lipscomb T, Loscutoff S, Lowenstine LJ, Marin M, Miller PE, McLellan WA, Moeller PDR, Powell CL, Rowles T, Silvagni P, Silver M, Spraker T, Trainer V, Dolan FMV (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84CrossRefGoogle Scholar
  34. Shaw BA, Andersen RJ, Harrison PJ (1997) Feeding deterrent and toxicity effects of apo-fucoxanthinoids and phycotoxins on a marine copepod (Tigriopus californicus). Mar Biol 128:273–280CrossRefGoogle Scholar
  35. Sierra A, Palafox-Uribe M, Grajales-Montiel J, Cruz-Villacorta A, Ochoak, JL (1997) Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35:447–453CrossRefGoogle Scholar
  36. Teegarden GJ (1999) Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar Ecol Prog Ser 181:163–176CrossRefGoogle Scholar
  37. Teegarden, GJ, Cembella AD (1996) Grazing of toxic dinoflagellates, Alexandrium spp, by adult copepods of coastal Maine: Implications for the fate of paralytic shellfish toxins in marine food webs. J Exp Mar Biol Ecol 196:145–176CrossRefGoogle Scholar
  38. Teegarden, GJ, Cembella AD, Capuano CL, Barron SH, Durbin EG (2003) Phycotoxin accumulation in zooplankton feeding on Alexandrium fundyense–vector or sink?. J Plank Res 25:429–443CrossRefGoogle Scholar
  39. Tester P, Pan Y, Doucette J (2001) Accumulation of domic acid activity in copepods. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewins RJ (eds) Harmful algal blooms 2000, Intergovernmental Oceanographic Commission of UNESCO, pp 418–420Google Scholar
  40. Turner JT, Tester PA (1997) Toxic marine phytoplankton, zooplancton grazers, and pelagic food webs. Limnol Oceanogr 42:1203–1214CrossRefGoogle Scholar
  41. Turner JT, Tester PA, Hansen PJ (1998) Interactions between toxic marine phytoplankton and metazoan and protistan grazers. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. NATO ASI Series G 41, pp 453–474Google Scholar
  42. Turner JT, Doucette GT, Powell CL, Kulis DM, Keafer BA, Anderson DM (2000) Accumulation of red tide toxins in larger size fractions of zooplankton assemblages from Massachusetts Bay, USA. Mar Ecol Prog Ser 203:95–107CrossRefGoogle Scholar
  43. Turner JT, Ianora A, Miralto A, Laabir M, Esposito F (2001) Decoupling of copepod grazing rates, fecundity and egg hatching success on mixed and alternating diatom and dinoflagellate diets. Mar Ecol Prog Ser 220:187–199CrossRefGoogle Scholar
  44. Turriff N, Runge JA, Cembella AD (1995) Toxin accumulation and feeding behaviour of the planktonic copepod Calanus finmarchicus exponed to the red-tide dinoflagellate Alexandrium excavatum. Mar Biol 123:55–64CrossRefGoogle Scholar
  45. Uye S, Takamatsu K (1990) Feeding interactions between planktonic copepods and red-tide flagellates from Japanese coastal waters. Mar Ecol Prog Ser 59:97–107CrossRefGoogle Scholar
  46. Vale P, and Sampayo MAU (2001) Domoic acid in Portuguese shellfish and fish. Toxicon 39:893–904CrossRefGoogle Scholar
  47. Vale P, Sampayo MAU (2002) Evaluation of extraction methods for analysis of domoic acid in naturally contaminated shellfish from Portugal. Harmful Algae 2:127–135CrossRefGoogle Scholar
  48. Wekell JC, Trainer VL, Ayres D, Simons D (2002) A study of spatial variability of domoic acid in razor clams: recommendations for resource management on the Washington coast. Harmful Algae 1:35–43CrossRefGoogle Scholar
  49. White AW (1981) Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol Oceanogr 26:103–109CrossRefGoogle Scholar
  50. Windust A (1992) The response of bacteria, microalgae, and zooplankton to the diatom Nitzschia pungens forma multiseries, and its toxic metabolite domoic acid. M.Sc Thesis, Dalhousie Univ, pp 92Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Isabel Maneiro
    • 1
  • Paula Iglesias
    • 1
  • Cástor Guisande
    • 1
  • Isabel Riveiro
    • 1
  • Aldo Barreiro
    • 1
  • Soultana Zervoudaki
    • 2
  • Edna Granéli
    • 3
  1. 1.Facultad de Ciencias del MarUniversidad de VigoVigoSpain
  2. 2.Hellenic Center for Marine ResearchMavro Lithari, Anavissos AtticaGreece
  3. 3.Marine Sciences DepartmentUniversity of KalmarKalmarSweden

Personalised recommendations