Marine Biology

, Volume 147, Issue 1, pp 13–25 | Cite as

Diet of the Humboldt penguin (Spheniscus humboldti) in northern and southern Chile

  • C. Herling
  • B. M. Culik
  • J. C. HennickeEmail author
Research Article


The diet of the Humboldt penguin (Spheniscus humboldti) was examined and compared in two colonies in Chile. Field work was conducted on Pan de Azúcar Island in northern Chile in the breeding season 1998/1999 and on the Puñihuil Islands in southern Chile over two successive breeding seasons during 1997/1998 and 1998/1999. Penguin diet was studied by stomach-pumping birds and analysed by species composition, size and mass of prey. Fish were the dominant prey item at both sites, the contribution of cephalopods and crustaceans varying between sites. The fish prey consisted predominantly of school fish, but there were clear latitudinal differences in fish prey taken. Penguins in the northern colony consumed primarily garfish (Scomberesox saurus), while birds at the southern colony of Puñihuil fed primarily on anchovy (Engraulis ringens), Araucanian herring (Strangomera bentincki) and silverside (Odontesthes regia). The results showed significant differences in terms of numbers of fish taken between the two breeding seasons at Puñihuil. In 1997/1998 penguins consumed almost exclusively anchovy, while they fed primarily on silversides in the successive year. Almost all prey, except stomatopods, were characterised as being pelagic species that occur in relatively inshore water, consistent with the foraging behaviour of Humboldt penguins. The dependence of Humboldt penguins on commercially exploited, schooling prey species makes the species particularly susceptible to changes in prey stocks, due to non-sustainable fisheries management.


Sampling Period Breeding Season Prey Item Prey Species Commercial Fishery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the people who offered their help, particularly to Dr. C. Moreno, University of Valdivia, Chile, for compiling the reference collection of otoliths; Dr. M. Araya, University Concepción, Chile, for helping with identification of the otoliths; Dr. G. Luna-Jorquera and F. Sapulveda, University of Coquimbo, Chile, for their support in getting fresh fish samples and in identifying the different vertebrae; Dr. U. Piatkowski, Institut für Meereskunde, University Kiel, Germany, for helping with identification of the squid beaks; and Professor Dr. D. Adelung and Dr. R. Wilson, Institut für Meereskunde, University Kiel, Germany, for their overall support. The study was conducted with permission of the Chilean Ministry of Fisheries (SERNAP) and the Chilean Nature Conservancy (CONAF), and complied with the laws of Chile.


  1. Arntz WE, Fahrbach E (1991) El Niño—Klimaexperiment der Natur. Birkhäuser, Basel, SwitzerlandGoogle Scholar
  2. Boersma PD (1998) Population trends of the Gálapagos penguin: impacts of El Niño and La Niña. Condor 100:245–253Google Scholar
  3. Carey C (ed) (1996) Avian energetics and nutritional ecology. Chapman and Hall, New YorkGoogle Scholar
  4. Castillo J, Barbieri MA, Gonzalez A (1996) Relationships between sea surface temperature, salinity and pelagic fish distribution off northern Chile. ICES J Mar Sci 53:139–146Google Scholar
  5. Clarke M (1986) A handbook for the identification of cephalopod beaks. Clarendon, OxfordGoogle Scholar
  6. Colling A (2001) Ocean circulation, 2nd edn. Prepared by an Open University Course Team, Butterworth-Heinemann, OxfordGoogle Scholar
  7. Crawford RJM, Shelton PA (1981) Population trends for some southern African seabirds related to fish availability. In: Cooper J (ed) Proceedings of the symposium on the birds of the sea and shore, 1979. African Seabird Group, Cape Town, pp 15–41Google Scholar
  8. Culik BM, Luna-Jorquera G (1997) Satellite tracking of Humboldt penguins (Spheniscus humboldti) in northern Chile. Mar Biol 128:547–556Google Scholar
  9. Culik BM, Luna-Jorquera G, Oyarzo H, Correa H (1998) Humboldt penguins monitored via VHF telemetry. Mar Ecol Prog Ser 162:279–286Google Scholar
  10. Dietrich G, Kalle K, Krauss W, Siedler G (1975) Allgemeine Meereskunde, 3rd edn. Gebrüder Borntraeger, BerlinGoogle Scholar
  11. Duffy DC, Wilson RP, Ricklefs RC, Broni SC, Davis H (1987a) Penguins and purse seiners: competition or co-existence? Nat Geol Res 3:480–488Google Scholar
  12. Duffy DC, Arntz WE, Tovar HS, Boersma PD, Norton RL (1987b) A comparison of the effects of El Niño and the Southern Oscillation on birds in Peru and the Atlantic Ocean. In: Proc 1986 Int Ornithol Cong. Ottawa, CanadaGoogle Scholar
  13. Ellis S, Croxalll JP, Cooper J (eds) (1998) Penguin conservation assessment and management plan. Report. IUCN/SSC Conservation Breeding Specialist Group, Appl Valley, Minn., USAGoogle Scholar
  14. FAO (Food and Agriculture Organization) (1993) Field guide to the commercial marine and brackish-water resources of the northern coast of South America. Species Identification sheets for fishery purposes, FAO, RomeGoogle Scholar
  15. Fitzpatrick LC, Guerra C, Aguilar R (1988) Energetics of reproduction in the desert nesting sea gull Larus modestus. Estud Oceanol Fac Recur Mar Univ Autofagasta 7:33–39Google Scholar
  16. Frere E, Gandini P, Lichtschein V (1996) Variacon latitudinal en la dieta del pinguino de Magallanes (Spheniscus magellanicus) en la costa Patagonia, Argentina. Ornitol Neotrop 7:35–41Google Scholar
  17. Furness RW, Monaghan P (1987) Seabird ecology. Blackie, GlasgowGoogle Scholar
  18. Gellona FF, Cortés RM, Vignoli MLV (1995) Claves osteológicas para peces de Chile central. Un enfoque arqueológico. Universidad de Chile, Santiago de ChileGoogle Scholar
  19. Guerra C (1992) Efectos de la nidificación estival/invernal, sobre parámetros seleccionados de la historia de vida del pingüino de Humboldt Spheniscus humboldti. Informe Proyecto Fondecyt 90-0599, Universidad de Antofagasta, Antofagasta, ChileGoogle Scholar
  20. Hansen JE, Martos P, Madirolas A (2001) Relationship between spatial distribution of the Patagonian stocks of Argentine anchovy, Engraulis anchoita, and sea temperatures during late spring to early summer. Fish Oceanogr 10:193–206Google Scholar
  21. Hays C (1986) Effects of the El Niño on Humboldt penguin colonies in Peru. Biol Conserv 36:169–180Google Scholar
  22. Heath RGM, Randall RM (1985) Growth of jackass penguin chicks (Spheniscus demersus) hand reared on different diets. J Zool (Lond) 205:91–105Google Scholar
  23. Hennicke J (2001) Variabilität im Jagdverhalten des Humboldtpinguins (Speniscus humoldti) unter verschiedenen ozeanographischen Bedingungen. PhD thesis, Christian-Albrechts-Universität, Kiel, GermanyGoogle Scholar
  24. James DB, Thirumilu P (1993) Population dynamics of Oratosquilla nepa in the trawling grounds off Madras (Tamil Nadu, India). J Mar Biol Assoc India 35:135–140Google Scholar
  25. Jobling GM, Breiby A (1986) The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia 71:265–274Google Scholar
  26. Lalli CM, Parsons TR (1997) Biological oceanography—an introduction, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  27. Lamprecht J (1992) Biologische Forschung: von der Planung bis zur Publikation. Pareys Studientexte 73, Verlag Paul Parey, BerlinGoogle Scholar
  28. Luna-Jorquera G (1996a) Conservation assessment and management plan (CAMP): the Humboldt penguin Spheniscus humboldti. In: Croxall J, Cooper J, Ellis S (eds) Penguin conservation assessment and management plan workshop, Cape Town, South Africa. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minn., USAGoogle Scholar
  29. Luna-Jorquera G (1996b) Balancing the energy budget for a warm-blooded bird in a hot desert and cold seas: the case of the Humboldt penguin. PhD thesis, Christian-Albrechts-Universität, Kiel, GermanyGoogle Scholar
  30. Luna-Jorquera G, Culik BM (2000) Metabolic rates of swimming Humboldt penguins. Mar Ecol Prog Ser 203:301–309Google Scholar
  31. Manning RB (1968) A revision of the family Squillidae (Crustacea, Stomatopoda), with the description of eight genera. Bull Mar Sci 18:105–142Google Scholar
  32. Mills KL (2000) Diving behaviour of two Galápagos penguins Spheniscus mendiculus. Mar Ornithol 28:75–79Google Scholar
  33. Montevecchi WA, Birt VL, Cairns DK (1988) Dietary changes of seabirds associated with local fisheries failures. Biol Oceanogr 5:153–161Google Scholar
  34. Murphy RC (1936) Oceanic birds of South America. American Museum of Natural History, New YorkGoogle Scholar
  35. Parrish RH, Serra R, Grant WS (1989) The monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeography. Can J Fish Aquat Sci 46:2019–2036Google Scholar
  36. Piatkowski U, Pütz K, Heinemann H (2001) Cephalopod prey of king penguins (Aptenodytes patagonicus) breeding at Volunteer Beach, Falkland Islands, during austral winter 1996. Fish Res (Amst) 52:79–90Google Scholar
  37. Pierce GJ, Boyle PR, Diack JSW (1991) Identification of fish otoliths and bones in faeces and digestive tracts of seals. J Zool (Lond) 224:320–328Google Scholar
  38. Radl A, Culik BM (1999) Foraging behaviour and reproductive success in Magellanic penguins (Speniscus magellanicus): a comparative study of two colonies in southern Chile. Mar Biol 133:381–393Google Scholar
  39. Randall RM, Randall BM (1986) The diet of jackass penguins Spheniscus demersus in Algoa Bay, South Africa, and its bearing on population declines elsewhere. Biol Conserv 37:119–134Google Scholar
  40. Rocha R (1997) Cephalopods in Chilean waters—a review. Malacol Rev 30:101–113Google Scholar
  41. Scolaro JA, Wilson RP, Laurenti S, Kierspel M, Gallelli H, Upton JA (1999) Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Colon Waterbirds 22:104–110Google Scholar
  42. Sernap (1998) Anuario estadístico de pesca, 1997. Servicio Nacional de Pesca, Ministerio de Economia, Fomento y Reconstruccion, Valparaiso, ChileGoogle Scholar
  43. Sernap (1999) Anuario estadístico de pesca, 1998. Servicio Nacional de Pesca, Ministerio de Economia, Fomento y Reconstruccion, Valparaiso, ChileGoogle Scholar
  44. Sernap (2000) Anuario estadístico de pesca, 1999. Servicio Nacional de Pesca, Ministerio de Economia, Fomento y Reconstruccion, Valparaiso, ChileGoogle Scholar
  45. Simeone A, Schlatter RP (1998) Threats to a mixed-species colony of Spheniscus penguins in southern Chile. Colon Waterbirds 21:418–421Google Scholar
  46. Simeone A, Bernal M, Meza J (1999) Incidental mortality of Humboldt penguins Spheniscus humboldti in gill nets, central Chile. Mar Ornithol 27:145–149Google Scholar
  47. Van Heezik YM (1989) Diet of the fjordland crested penguin during the post-guard phase of chick growth. Notornis 36:151–156Google Scholar
  48. Watt J (1997) Guide to the identification of North Sea fish using praemaxillae and vertebrae. ICES Coop Res Rep 220:129–190Google Scholar
  49. Whitehead PJP, Nelson GJ, Wongratana T (1988) Clupeoid fishes of the world (suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings, part 2: Engraulidae. FAO Species Catalogue vol 7, FAO, RomeGoogle Scholar
  50. Williams TD (1995) The penguins. Spheniscidae. Bird families of the world. Oxford University Press, OxfordGoogle Scholar
  51. Wilson RP (1984) An improved stomach pump for penguins and other seabirds. J Field Ornithol 55:109–112Google Scholar
  52. Wilson RP (1985) Seasonality in diet and breeding success of the jackass penguin Spheniscus demersus. J Ornithol 126:53–62Google Scholar
  53. Wilson RP, La Cock GD, Wilson M-P, Mollagee F (1985) Differential digestion of fish and squid in the jackass penguin Spheniscus demersus. Ornnis Scand 16:77–79Google Scholar
  54. Wilson RP, Wilson M-P, Duffy DC, Araya B (1989) Diving behaviour and prey of the Humboldt penguin Spheniscus humboldti. J Ornithol 130:75–79Google Scholar
  55. Wilson RP, Duffy DC, Wilson M-P, Araya B (1995) The ecology of species replacement of Humboldt and Magellanic penguins in Chile. Gerfaut 85:49–61Google Scholar
  56. Wolff GA (1982) A beak key for eight eastern tropical Pacific cephalopods species with relationships between their beak dimension and size. Fish Bull (Wash DC) 80:357–370Google Scholar
  57. Wolff GA (1984) Identification and estimation of size from the beaks of 18 species of cephalopods from the Pacific Ocean. NOAA Tech Rep NMFS 17Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für MeereskundeKielGermany
  2. 2.Zoologisches Institut und MuseumHamburgGermany

Personalised recommendations