Advertisement

Marine Biology

, Volume 146, Issue 5, pp 895–901 | Cite as

The color of the trophosome: elemental sulfur distribution in the endosymbionts of Riftia pachyptila (Vestimentifera; Siboglinidae)

  • B. Pflugfelder
  • C. R. Fisher
  • M. Bright
Research Article

Abstract

Riftia pachyptila Jones, 1981, lives in association with a chemoautotrophic, sulfide-oxidizing γ-Proteobacterium that occurs in a specialized organ, the trophosome. Ultrastructurally different bacterial subpopulations occur in different regions of the trophosome lobules (central rods, median small cocci, peripheral large cocci) and contain vesicles, which have been proposed to be sites of elemental sulfur storage. Differently colored trophosomes have been suggested to reflect different amounts of elemental sulfur in the tissue. In this study, the presence of elemental sulfur (S0) was confirmed in the vesicles of the symbionts of R. pachyptila by electron energy loss spectrography (EELS). The proportion of (two-dimensional) area occupied by sulfur vesicles in the cells was found to be strongly correlated with trophosome color, both in individuals with uniformly colored trophosomes and individuals that exhibited a gradual color change along the length of their trophosomes. Elemental sulfur content was highly variable between individuals from a single collection, suggesting a high degree of microhabitat heterogeneity within vestimentiferan aggregations.

Keywords

Sodium Cacodylate Buffer Uranyl Nitrate Bacterial Morphotypes Sulfur Storage Posterior Body Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank the captain and crew of the R.V. “Atlantis” and D.S.V. “Alvin” for their support during the “HOLIDAYS AT SEA” cruise in November/December 2001 and the “ANOTHER HOLIDAY AT SEA” cruise in December 2002. Technical assistance from P. Gahleitner and D. Gruber, critical comments from three anonymous reviewers, and support from B. Pflugfelder, R. Pflugfelder and M. Plank is gratefully acknowledged. Financial support came from the Austrian Science Foundation FWF 13762-BIO to M.B. and NSF OCE0002729 to C.R.F.

References

  1. Ahn CC, Krivanek OL (1983) EELS atlas: a reference guide of electron energy loss spectra covering all stable elements. ASU HREM Facility and Gatan, TempeGoogle Scholar
  2. Anderson AE, Childress JJ, Favuzzi JA (1987) Net uptake of CO2 driven by sulphide and thiosulphate oxidation in the bacterial symbiont-containing clam Solemya reidi. J Exp Biol 133:1Google Scholar
  3. Bosch C, Grassé P (1984a) Cycle partiel des bactéries chimioautotrophes symbiotiques et leurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifére). 1. Le trophosome et les bactériocytes. CR Hebd Seances Acad Sci Paris 299:371–376Google Scholar
  4. Bosch C, Grassé P (1984b) Cycle partiel des bactéries chimioautotrophes symbiotiques et leurs rapports avec les bactériocytes chez Riftia pachyptila Jones (Pogonophore Vestimentifére). 2. L’évolution des bactéries symbiotiques et des bactériocytes. CR Hebd Seances Acad Sci Paris 299:413–419Google Scholar
  5. Bright M, Sorgo A (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invertebr Biol 122:345–366Google Scholar
  6. Bright M, Keckeis H, Fisher CR (2000) An autoradiographic examination of carbon fixation, transfer, and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632CrossRefGoogle Scholar
  7. Brooks JM, Kennicutt MC, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon source. Science 238:1138Google Scholar
  8. Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302:58–61CrossRefGoogle Scholar
  9. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342Google Scholar
  10. Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  11. Childress JJ, Arp AJ, Fisher CR (1984) Metabolic blood characteristics of the hydrothermal vent tube-worm Riftia pachyptila. Mar Biol 83:109–124CrossRefGoogle Scholar
  12. Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tube worm Riftia pachyptila Jones. Biol Bull (Woods Hole) 180:135Google Scholar
  13. Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve mollusc of the genus Thyasira. J Mar Biol Assoc UK 66:915–929Google Scholar
  14. Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC (1985) Sulphur-oxidizing bacteria and hemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser 23:85–98Google Scholar
  15. Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond Ser B Biol Sci 227:227–247Google Scholar
  16. De Burgh ME (1985) Evidence for a physiological gradient in the vestimentiferan trophosome: size-frequency analysis of bacterial populations and trophosome chemistry. Can J Zool 64:1095–1103Google Scholar
  17. Desbruyères D, Segonzac M (1997) (eds) Handbook of deep-sea hydrothermal vent fauna. IFREMER, PlouzaneGoogle Scholar
  18. Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510PubMedGoogle Scholar
  19. Felbeck H, Turner PJ (1995) CO2 transport in catheterized hydrothermal vent tubeworms, Riftia pachyptila (Vestimentifera). J Exp Zool 272:95–102Google Scholar
  20. Felbeck H, Childress JJ, Somero GN (1981) Calvin–Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291CrossRefGoogle Scholar
  21. Fisher CR, Childress JJ (1984) Substrate oxidation by trophosome tissue from Riftia pachyptila Jones (phylum Pogonophora). Mar Biol Lett 5:171–184Google Scholar
  22. Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Physiology, morphology, and biochemical composition of Riftia pachyptila at Rose Garden in 1985. Deep-Sea Res 35:1745–1758Google Scholar
  23. Giere O, Langheld C (1987) Structural organisation, transfer and biological fate of endosymbiotic bacteria in gutless oligochaets. Mar Biol 93:641–650CrossRefGoogle Scholar
  24. Hand SC (1987) Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate–sulfur bacteria symbioses. Biol Bull (Woods Hole) 173:260–276Google Scholar
  25. Johnson KS, Childress JJ, Behler CL (1988a) Short term temperature variability in the Rose Garden hydrothermal vent field. Deep-Sea Res 35:1711–1722Google Scholar
  26. Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Behler CL (1988b) Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep-Sea Res 35:1723–1744Google Scholar
  27. Jones ML (1981) Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213:333–336Google Scholar
  28. Jones ML (1988) The Vestimentifera, their biology, systematic and evolutionary patterns. Oceanol Acta 8:69–82Google Scholar
  29. Kortje KH (1994) Image-EELS: a synthesis of energy-loss analysis and imaging. Scanning Microsc 8[Suppl]:227–287Google Scholar
  30. Krieger J, Giere O, Dubilier N (2000) Immunocytochemical localization of RubisCo in endosymbiotic bacteria of the gutless oligochaete Inandrilus leukodermatus (Annelida). Mar Biol 137:239–244CrossRefGoogle Scholar
  31. Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154PubMedGoogle Scholar
  32. Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC, Boca Raton, Fla., USA, pp 125–167Google Scholar
  33. Pasteris JD, Freeman JJ, Goffredi SK, Buck KR (2001) Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180:3–18CrossRefGoogle Scholar
  34. Powell MA, Somero GN (1986) Adaptions to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull (Woods Hole) 171:274–290Google Scholar
  35. Rau GH (1981) Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science 213:338–339Google Scholar
  36. Somero GN, Childress JJ, Anderson AE (1989) Transport, metabolism and detoxification of hydrogen sulfide in animals from sulfide-rich marine environment. Crit Rev Aquat Sci 1:591Google Scholar
  37. Sorgo A, Gaill F, Lechaire JP, Arndt C, Bright M (2002) Glycogen storage in the Riftia pachyptila trophosome: contribution of host and symbionts. Mar Ecol Prog Ser 231:115–120Google Scholar
  38. Stahl D, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411Google Scholar
  39. Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campyloceroides—a result of internal sulfur formations? Mar Ecol Prog Ser 193:251–259Google Scholar
  40. Truchet M, Jeantet AY, Ballan-Dufrancais C, Lechaire JP, Cosson R (1998) Le trophosome des vestimentifères, Riftia pachyptila et Tevnia jerichonana: bioaccumulations et metabolisme du soufre. Cah Biol Mar 39:129–141Google Scholar
  41. Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic bacteria: a possible inorganic energy storage compound. Mar Biol 88:33–42CrossRefGoogle Scholar
  42. Vetter RD, Fry B (1998) Sulfur contents and sulfur isotopic composition of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar Biol 132:453–460CrossRefGoogle Scholar
  43. Weibel ER, Elias H (1967) Quantitative methods in morphology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  44. Wilmot DB, Vetter RD (1990) The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar Biol 106:273–283Google Scholar
  45. Winogradsky S (1887) Über Schwefelbakterien. Bot Ztg 45:489–610Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Ecology and Conservation BiologyUniversity of ViennaViennaAustria
  2. 2.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations