Marine Biology

, Volume 146, Issue 5, pp 869–875 | Cite as

Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida)

  • Alexander V. EreskovskyEmail author
  • Elizaveta Gonobobleva
  • Andrey Vishnyakov
Research Article


All stages of vertical transmission of symbiotic bacteria, from the penetration into oocytes to the formation of rhagon, were investigated in the White Sea (Arctic) representatives of Halisarca dujardini Johnston (Demospongiae). Small populations of free-living specific symbiotic bacteria inhabit the mesohyl of H. dujardini. They are represented by a single morphotype of small spiral gram-positive bacteria. Vertical transmission of symbiotic bacteria between generations in sponges may occur in different ways. In the case of H. dujardini the bacteria penetrate into growing oocytes by endocytosis. A part of the bacteria plays a trophic role for oocytes and the other part remains undigested in membrane-bound vacuoles within the cytoplasm. In cleaving embryos bacteria are situated between the blastomeres or in the vacuoles. In the blastula all bacteria are disposed in the blastocoel. The symbionts are situated in intercellular spaces in free-swimming larvae and during metamorphosis. Symbiotic bacteria do not play any trophic role in the period of embryonic and postembryonic development of H. dujardini. No signs of destruction and digestion of bacteria were revealed at any stage of development.


Sponge Vertical Transmission Marine Sponge Symbiotic Bacterium Yolk Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Dr. Jean Vacelet and Nicole Boury-Esnault for helpful discussions, and Chantal Bézac for help during the SEM preparation. This work was funded by grant INTAS-YSC 02-4441, by the program Universities of Russia no. 07.01.017, and by grant RFBR no. 03-04-49773; A. Ereskovsky received a special grant from the Federal Scientific Policy of Belgium, intended to promote collaboration S&T with oriental and central Europe.


  1. Aisenstadt TB, Korotkova GP (1976) A study of oogenesis in the marine sponge Halisarca dujardini II. Phagocytic activity of the oocytes and vitellogenesis. Tsitologiia 18:818–823Google Scholar
  2. Althoff K, Schott C, Steffen R, Batel R (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbour also for putitatively toxic bacteria? Mar Biol 130:529–536CrossRefGoogle Scholar
  3. Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experimentia 52:716–722Google Scholar
  4. Boury-Esnault N (1976) Ultrastructure de la larve parenchymella d’Hamigera hamigera (Shmidt) (Démosponge, Poecilosclerida). Origine des céllules grises. Cah Biol Mar 17:9–20Google Scholar
  5. Boury-Esnault N, Efremova SM, Bezak C, Vacelet J (1999) Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. Invert Reprod Dev 35:187–201Google Scholar
  6. Boury-Esnault N, Ereskovsky AV, Bézac C, Tokina DB (2003) Larval development in Homoscleromorpha (Porifera, Demospongiae): first evidence of a basement membrane in sponge larvae. Invert Biol 122:187–202Google Scholar
  7. Ereskovsky AV (1993) Addition to the fauna of sponges (Porifera) of the White Sea. Vestnik St. Petersburg Univ Ser 3 2(10):3–12Google Scholar
  8. Ereskovsky AV (1994) Materials to the faunistic study of the White Sea and Barents Sea sponges 2. Biogeographical and comparative faunistic analysis. Vestnik St. Petersburg Univ Ser 3 1(3):13–26Google Scholar
  9. Ereskovsky AV (2000) Reproduction cycles and strategies of cold-water sponges Halisarca dujardini (Demospongiae, Dendroceratida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. Biol Bull (Woods Hole) 198:77–87Google Scholar
  10. Ereskovsky AV (2002) Polyaxial cleavage in sponges (Porifera): a new pattern of metazoan cleavage. Doklady Biol Sci 386:472–474CrossRefGoogle Scholar
  11. Ereskovsky AV, Boury-Esnault N (2002) Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha), transmission of maternal cells and symbiotic bacteria. J Nat Hist 36:1761–1775CrossRefGoogle Scholar
  12. Ereskovsky AV, Gonobobleva EL (2000) New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae: Halisarcida). Zoosystema 22:355–368Google Scholar
  13. Ereskovsky AV, Tokina DB (2004) Morphology and fine structure of the swimming larvae of Ircinia oros (Porifera, Demospongiae, Dictyoceratida). Invert Reprod Dev 45:137–150Google Scholar
  14. Franzen W (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology 107:349–357CrossRefGoogle Scholar
  15. Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM (1999) Membrane-bounded nuclear bodies in a diverse range of microbial symbionts of Great Barrier Reef sponges. Mem Queensl Mus 44:193–203Google Scholar
  16. Gaino E (1980) Indagine ultrastrutturale sugli ovociti maturi di Chondrilla nucula Schmidt (Porifera, Demospongiae). Cah Biol Mar 21:11–22Google Scholar
  17. Gaino E, Sarà M (1994) An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invert Reprod Dev 26:99–106Google Scholar
  18. Gallissian MF (1983) Ètude ultrastructurale du developpement embryonaire chez Grantia compressa F. (Porifera, Calcarea). Arch Anat Microsc Morphol Exp 1:59–75Google Scholar
  19. Gallissian MF, Vacelet J (1976) Ultrastructure de quelques stades de l’ovogénèse des spongiaires du genre Verongia (Dictyoceratida). Ann Sci Nat Zool Biol Anim 18:381–404Google Scholar
  20. Garrone R (1974) Ultrastructure d’une “gemmule armée” planctonique d’Èponge clionidae. Arch Anat Microsc Morphol Exp 63:163–182PubMedGoogle Scholar
  21. Garson MJ (1994) The biosynthesis of sponge secondary metabolites: why it is important. In: Soest RWM van, Kempen TMG van, Braekman JC (eds) Sponges in time and space. Balkema Press, Rotterdam, 427–440Google Scholar
  22. Garson MJ, Flowers AE, Webb RI, Charan RD, McCafferty EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue 293:365–373CrossRefPubMedGoogle Scholar
  23. Gonobobleva EL, Ereskovsky AV (2004) Polymorphism in free-swimming larvae of Halisarca dujardini (Demospongiae, Halisarcida). In: Pansini M, Pronzato R, Bavestrello G, Manconi R (eds) Sponge sciences in the new millennium. Boll Mus Ist Biol Univ Genova 68:349–356Google Scholar
  24. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker GJ (1996) Metabolites from an Antarctic sponge associated bacterium Pseudomonas aerugenosa. J Nat Prod 59:293–296CrossRefPubMedGoogle Scholar
  25. Kaye HR (1991) Sexual reproduction in four Caribbean commercial sponges II. Oogenesis and transfer of bacterial symbionts. Invert Reprod Dev 19:13–24Google Scholar
  26. Kaye HR, Reiswig HM (1991) Sexual reproduction in four Caribbean commercial sponges III. Larval behaviour, settlement and metamorphosis. Invert Reprod Dev 19:25–35Google Scholar
  27. Kobayashi M, Aoki S, Kawazoe K, Kihara N, Sasaki T, Kitagawa I (1993) Altohyrtin A: a potent anti-tumor macrolide from the Okinawan marine sponge Hyrtios altum. Tetrahedron Lett 34:2795–2798CrossRefGoogle Scholar
  28. Lévi C, Lévi P (1976) Embryogénèse de Chondrosia reniformis (Nardo), demosponge ovipare, et transmission des bactéries symbiotiques. Ann Sci Nat Zool Biol Anim 18:367–380Google Scholar
  29. Lévi C, Porte A (1962) Ètude au microscope électronique de l’éponge Oscarella lobularis Schmidt et de sa larve amphiblastula. Cah Biol Mar 3:307–315Google Scholar
  30. Lopes JV, McCarthy PJ, Janda KE, Willoughby R, Pomponi S (1999) Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera, Demospongiae). Mem Queensl Mus 44:329–341Google Scholar
  31. Lufty RG (1957) On the origin of the so-called mesoblast cells in the amphiblastula larvae of calcareous sponges. Cellule (Belgique) 58:231–236Google Scholar
  32. Muricy G, Bezac C, Gallissian MF, Boury-Esnault N (1999) Anatomy, cytology and symbiotic bacteria of four Mediterranean species of Plakina Schulze, 1880 (Demospongiae, Homosclerophorida). J Nat Hist 33:159–176CrossRefGoogle Scholar
  33. Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102Google Scholar
  34. Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull (Woods Hole) 141:568–591Google Scholar
  35. Reiswig HM (1976) Natural gamete release and oviparity in Caribbean Demospongiae. In: Harrison FM, Cowden RR (ed) Aspects of sponge biology. Academic Press, New York, pp 99–112Google Scholar
  36. Rützler K (1990) Associations between Caribbean sponges and photosynthetic organisms. In: Ruetzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, D.C., pp 455–466Google Scholar
  37. Rützler K, Soest RWM van, Alvarez B (2003) Swenzea zeai, a Caribbean reef sponge with a giant larva, and Scopalina ruetzleri: a comparative fine-structural approach to classification (Demospongiae, Halichondrida, Dictyonellidae). Invert Biol 122:203–222Google Scholar
  38. Sarà M, Vacelet J (1973) Écologie des Demosponges. In: Grassé PP (ed) Traité de Zoologie, vol 1. Masson, Paris, pp 462–576Google Scholar
  39. Sarà M, Bavestrello G, Cattaneo-Vietti R, Cerrano C (1998) Endosymbiosis in sponges—relevance for epigenesis and evolution. Symbiosis 25:57–70Google Scholar
  40. Schmitz FJ (1994) Cytotoxic compounds from sponges and associated microfauna. In: Soest RWM van, Kempen TMG van, Braekman JC (eds) Sponges in time and space. Balkema Press, Rotterdam, pp 485–496Google Scholar
  41. Sciscioli M, Lepore E, Scalera-Liaci L, Gherardi M (1989) Indagine ultrastrutturale sugli ovociti di Erylus discophorus (Schmidt) (Porifera, Tetractinellida). Oebalia 15:939–941Google Scholar
  42. Sciscioli M, Scalera-Liaci L, Lepore E, Gherardi M, Simpson TL (1991) Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (Porifera Demospongiae). Mol Reprod Dev 28: 346–350PubMedGoogle Scholar
  43. Sciscioli M, Lepore E, Gherardi M, Scalera-Liaci L (1994) Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demospongiae): an ultrastructural study. Cah Biol Mar 35:471–478Google Scholar
  44. Shigemori H, Bae MA, Yazava K, Sasaki T, Kobayashi J (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320Google Scholar
  45. Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New YorkGoogle Scholar
  46. Sizova NA, Ereskovsky AV (1997) Ultrastructural peculiarities of the early embryogenesis in a White Sea sponge Halisarca dujardini (Demospongiae, Dendroceratida). In: Ereskovsky A, Keupp H, Kohring R (eds) Modern problems of Poriferan biology. (Sonderheft der Berliner Geowissenschaftlichen Abhandlungen E 20) Freie Universitat, Berlin, pp 103–113Google Scholar
  47. Stierle DB, Stierle AA (1992) Pseudomonic acid derivatives from a marine bacterium. Experimentia 48:1165–1169Google Scholar
  48. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11CrossRefGoogle Scholar
  49. Uriz MJ, Becerro MA, Tur JM, Turton X (1996) Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae, Poecilosclerida). Mar Biol 124:583–590CrossRefGoogle Scholar
  50. Usher KM, Kuo J, Fromont J, Sutton DC (2001) Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 461:15–23CrossRefGoogle Scholar
  51. Vacelet J (1975) Étude en microscopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cel 23:271–288Google Scholar
  52. Vacelet J (1979) Quelques stades de la reproduction sexuée d’une éponge sphinctozoaire actuelle. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Coll Int CNRS Paris 291:95–111Google Scholar
  53. Vacelet J (1999) Planktonic armoured propagules of the excavating sponge Alectona (Porifera: Demospongiae) are larvae: evidence from Alectona wallichii and A. mesatlantica sp. nov. Mem Queensl Mus 44:627–642Google Scholar
  54. Vacelet J, Boury-Esnault N, Fiala-Médioni A, Fischer CR (1995) A methanotrophic carnivorous sponge. Nature 377:296CrossRefGoogle Scholar
  55. Vacelet J, Fiala-Médioni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidising bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Prog Ser 145:77–85Google Scholar
  56. Wilkinson CR (1978a) Microbial association in sponges I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167CrossRefGoogle Scholar
  57. Wilkinson CR (1978b) Microbial association in sponges II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176CrossRefGoogle Scholar
  58. Wilkinson CR (1987) Interocean differences in size and nutrition of coral reef sponge population. Science 236:1654–1657Google Scholar
  59. Wilkinson C, Garrone R, Herbage D (1979) Sponge collagen degradation in vitro by sponge-specific bacteria. In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Coll Int CNRS Paris 291:361–364Google Scholar
  60. Woollacott RM (1993) Structure and swimming behavior of the larva of Haliclona tubifera (Porifera: Demospongiae). J Morphol 218:301–321Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Alexander V. Ereskovsky
    • 1
    Email author
  • Elizaveta Gonobobleva
    • 1
  • Andrey Vishnyakov
    • 1
  1. 1.Department of Embryology, Biological FacultySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations