Marine Biology

, Volume 146, Issue 3, pp 455–465 | Cite as

Further insight on carapid—holothuroid relationships

  • E. ParmentierEmail author
  • P. Vandewalle
Research Article


Carapidae (or pearlfish) are eel-like fishes that live inside different invertebrates, such as holothurians, sea stars, or bivalves. Those of the genus Carapus are commensal and use their host as a shelter, while Encheliophis species are parasitic and eat the host’s gonads. In areas where they live in sympatry, C. boraborensis, C. homei, C. mourlani and E. gracilis are able to inhabit the same host species. Infestation is considered as monospecific when several conspecifics are observed in the same host. However, many aspects of this particular relation remain obscure, e.g. communication between carapids and the defence systems of the different protagonists (carapids and hosts). Experiments have been conducted in the field and laboratory to investigate several aspects of the carapids’ relationships with their hosts. Sampling carried out in the Bay of Opunohu (Moorea, French Polynesia) determined the sex ratio of C. boraborensis (3:1) and C. homei (1:1) and their distribution rate within different Echinodermata. Our study showed that neither species was capable of determining whether a heterospecific already occupied a sea cucumber or not. They were, however, able to locate the sea cucumber’s cloaca, due to the excurrent resulting from respiration. The sea cucumber’s defence system (Cuverian tubules) minimises predator attacks, but is not effective against carapid intrusion. The Carapidae defence system is twofold. Due to a passive system related to the sea cucumber’s low cloacal position, the Cuverian tubules are not expelled when fish enter the cloaca. Moreover, carapids resist sea cucumber toxins better than other reef fish. Their increased resistance might be related to their gills rather than to their mucus coating; however, the latter may assist the fish in resisting the sticky substances emitted by the Cuverian tubules.


Odour Reef Fish Body Cavity Respiratory Tree Caudal Extremity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. R. Galzin, Dr. Y. Chancerelle, J. Algret and J. Million (CRIOBE, Moorea, French Polynesia), Dr. V. Dufour and C. Brié (Tropical Fish Rangizoa) for assisting us in obtaining live carapids. This work was supported by grant no. 2.4560.96 from the “Fonds National de la Recherche Scientifique” of Belgium.


  1. Allen GR (1972) The anemonefishes: their classification and biology. TFH Publications, Neptune City, N.J., USAGoogle Scholar
  2. Ambrose DA (1996) Carapidae: pearlfishes. In: Moser HG (ed) The early stages of fishes in the California current region. Calcofi atlas no. 33. Allen, Lawrence, Kan., pp 532–533Google Scholar
  3. Arnold DC (1953) Observation on Carapus acus (Brünnich) (Jugulares, Carapidae). Pubbl Staz Zool Napoli 24:152–166Google Scholar
  4. Arnold DC (1956) A systematic revision of the fishes of the teleost family Carapidae (Percomorphi, Blennioidea), with description of two new species. Bull Br Mus (Nat Hist) Zool 4:247–307Google Scholar
  5. Arnold DC (1957) Further studies on the behaviour of the fish Carapus acus (Brünnich). Pubbl Staz Zool Napoli 30:263–268Google Scholar
  6. Aronson LH, Mosher C (1951) Observations on the behaviour and ecology of the West Indian pearlfish. Anat Rec 111:489Google Scholar
  7. Averdlund M, Nielsen LE (1996) Do the anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) imprint themselves to their host anemone Heteractis magnifica (Anthozoa: Actinidae)? Ethology 102:197–211Google Scholar
  8. Averdlund M, McCormick M, Fautin DG, Bildsøe M (1999) The anemonefish Amphiprion melanopus (Bleeker) (Pisces: Pomacentridae): a study of host detection and possible imprinting. Mar Ecol Prog Ser 188:207–218Google Scholar
  9. Averdlund M, Bundgaard I, Nielsen LE (2000a) Host imprinting in anemonefishes (Pisces: Pomacentridae): does it dictate spawning site preferences? Environ Biol Fishes 58:203–213CrossRefGoogle Scholar
  10. Averdlund M, Larsen K, Winsor H (2000b) The embryonic development of the olfactory system in Amphiprion melanopus (Perciformes: Pomacentridae) related to the host imprinting hypothesis. J Mar Biol Assoc UK 80:1103–1110CrossRefGoogle Scholar
  11. Bakus GJ (1968) Defensive mechanisms and ecology of some tropical holothurians. Mar Biol 2:23–32Google Scholar
  12. Bakus GJ (1973) The biology and ecology of tropical holothurians. In: Jones OA, Endean R (eds) Biology and geology of the coral reefs, vol 2. Academic, New York, pp 325–367Google Scholar
  13. Bauchot MLB (1992) Poissons téléostéens. In: Tillier S (ed) Encyclopédie du monde animal. Bordas, Paris, pp 367–368Google Scholar
  14. Bonhomme F, Planes S (2000) Some evolutionary arguments about what maintains the pelagic interval in reef fishes. Environ Biol Fishes 59:365–383CrossRefGoogle Scholar
  15. Branch JB (1969) Observations on the ecology and behaviour of Guam pearlfishes (Carapidae). Micronesica 24:274Google Scholar
  16. Bryan PJ, McClintock JB, Hopkins TS (1997) Structural and chemical defences of echinoderms from the northern Gulf of Mexico. J Exp Mar Biol Ecol 210:173–186CrossRefGoogle Scholar
  17. Castro-Aguirre JL, Garcia-Dominguez F, Balart EF (1996) Nuevos hospederos y datos morfométricos de Encheliophis dubius (Ophidiiformes: Carapidae) en el Golfo de California, México. Rev Biol Trop 44:753–756Google Scholar
  18. Cheney DP (1973) Pearlfish (Carapidae) in Acanthaster planci (L.). Micronesica 9:159Google Scholar
  19. Crosnier A (1962) Crustacés décapodes Portunidae. Faune de Madagascar 16:1–154Google Scholar
  20. Elliott JK, Mariscal RN (1996) Ontogenic and interspecific variation in the protection of anemonefishes from sea anemones. J Exp Mar Biol Ecol 208:57–72CrossRefGoogle Scholar
  21. Emery DC (1880) Fierasfer. Studî intorno alla sistematica, l’anatomia e la biologia delle specie mediterranee di questo di genere. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Mem 7:167–316Google Scholar
  22. Fautin DG (1991) The anemonefish symbiosis: what is known and what is not. Symbiosis 10:23–46Google Scholar
  23. Gustato G (1976) Osservazioni sulla biologica e sul comportamento di Carapus acus (Ophioidei, Percomorphi). Boll Soc Nat Napoli 85:505–535Google Scholar
  24. Gustato G, Villari A, Villani G (1979) Ulteriori dati sul comportamento di Carapus acus (Gadiformes, Ophidiodei). Boll Soc Nat Napoli 88:535–547Google Scholar
  25. Habermelh GG, Krebs HC (1990) Toxins of echinoderms. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 7. Elsevier Science, Amsterdam, pp 265–316Google Scholar
  26. Hamel JF, Mercier A (2000) Cuverian tubules in tropical holothurians: usefulness and efficiency as a defence mechanism. Mar Freshw Behav Physiol 33:115–139Google Scholar
  27. Kalinin VI, Prokofieva NG, Likhatskaya GN, Schentsova EB, Agafonova IG, Avilov SA, Drozdova OA (1996) Hemolytic activities of triterpene glycosides from the holothurian order dendrochirotida: some trends in the evolution of this group of toxins. Toxicon 34:475–483CrossRefPubMedGoogle Scholar
  28. Kloss K, Pfeiffer W (2000) Zur Biologie des “Eingeweidefisches” C. acus (Brunnich, 1768) (Carapidae, Teleostei), mit Hinweisen auf eine nicht-parasitische Ernähung. Rev Suisse Zool 107:335–349Google Scholar
  29. Lawrence JM (1987) A functional biology of echinoderms. The Johns Hopkins University Press, Baltimore, Md., USAGoogle Scholar
  30. Leis JM (1991) The pelagic stages of reef fishes: the larval biology of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, San Diego, pp 183–227Google Scholar
  31. Leis JM, McCormick MI (2002) The biology, behaviour, and ecology of the pelagic, larval stage of coral reef fishes. In: Sale PF (ed) Coral reef fishes: new insights into their ecology. Academic, San DiegoGoogle Scholar
  32. Lubbock R (1980) Why are clownfishes not stung by sea anemones? Proc R Soc Lond B 207:35–61Google Scholar
  33. Mader SS (1987) Biologie: évolution, diversité et environnement. Goulet, ottawa, CanadaGoogle Scholar
  34. Markle DF, Olney JE (1990) Systematics of the pearlfish (Pisces: Carapidae). Bull Mar Sci 47:269–410Google Scholar
  35. McCormick MI, Makey LJ (1997) Post-settlement transition in coral reef fishes: overlooked complexity in niche shifts. Mar Ecol Prog Ser 153:247–257Google Scholar
  36. Mebs D (1994) Anemonefish symbiosis: vulnerability and resistance of fish to the toxin of the sea anemone. Toxicon 32:1059–1068CrossRefPubMedGoogle Scholar
  37. Mebs D, Giese C, Werding B (1996) The gills of fish and crustaceans: vulnerability and resistance to cytolitic toxins. Toxicon 34:333CrossRefGoogle Scholar
  38. Meyer-Rochow VB (1977) Comparison between 15 Carapus mourlani in a single holoturian and 19 Carapus mourlani from starfish. Copeia 1977:582–585Google Scholar
  39. Meyer-Rochow VB (1979) Stomach and gut content of Carapus mourlani from starfish and a holothurian. Ann Zool Fenn 16:287–289Google Scholar
  40. Meyer-Rochow VB, Tiang MK (1978) Visual behavior, eye and retina of the parasitic fish Carapus mourlani. Biol Bull (Woods Hole) 155:576–585Google Scholar
  41. Miyagawa K (1989) Experimental analysis of the symbiosis between anemonefishes and sea anemones. Ethology 80:19–46Google Scholar
  42. Murdy EO, Cowan ME (1980) Observation on the behaviour and symbiotic relationship of the pearlfish Encheliophis vermicularis (Osteichthys: Carapidae). Kalikasan 9:309–312Google Scholar
  43. Ng PKL, Ming-Shiou Jeng (1999) The brachyuran crabs (Crustacea: Decapoda: Eumedonidae and Portunidae) symbiotic with echinoderms in Taiwan. Zool Stud 38:268–274Google Scholar
  44. Nigrelli RR (1952) The effects of holothurin on fish, and mice with sarcoma 180. Zoologica 37:89–90Google Scholar
  45. Olney JE, Leis JM, Rennis DS (2000) Carapidae. In : Leis JM, Carson-Ewart BM (eds) The larvae of Indo-Pacific coastal fishes. Brill, Leiden, pp 104–107Google Scholar
  46. Parmentier E, Vandewalle P (2003) Morphological adaptations of pearlfish (Carapidae) to their various habitats. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publishers, Enfield, USA, pp 261–276Google Scholar
  47. Parmentier E, Castro-Aguirre JL, Vandewalle P (2000) Morphological comparison of the buccal apparatus in two bivalve commensal Teleostei: Encheliophis dubius and Onuxodon fowleri (Carapidae, Ophidiiformes). Zoomorphology 120:29–37CrossRefGoogle Scholar
  48. Parmentier E, Lo-Yat A, Vandewalle P (2002) Identification of four French Polynesia tenuis carapini (Carapidae: Teleostei). Mar Biol 140:633–638CrossRefGoogle Scholar
  49. Parmentier E, Vandewalle P, Lagardère JP (2003) Sound producing mechanisms and recordings in three Carapidae species. J Comp Physiol A 189:283–292Google Scholar
  50. Scherrer B (1984) Biostatistiques. Gaëtan Morin, Québec, CanadaGoogle Scholar
  51. Shen SC, Yeh HS (1987) Study on pearlfishes (Ophidiiformes: Carapidae) of Taiwan. J Taiwan Mus 40:45–56Google Scholar
  52. Smith CL (1964) Some pearlfishes from Guam, with notes on their ecology. Pac Sci 18:34–40Google Scholar
  53. Smith CL, Tyler JC, Feinberg MN (1981) Population ecology and biology of the pearlfish (Carapus bermudensis) in the lagoon at Bimini, Bahamas. Bull Mar Sci 3:876–902Google Scholar
  54. Trott LB (1970) Contribution of the biology of carapid fishes (Paracanthopterygian: Gadiformes). Univ Calif Publ Zool 89:1–41Google Scholar
  55. Trott LB (1981) A general review of the pearlfishes (Pisces, Carapidae). Bull Mar Sci 31:623–629Google Scholar
  56. Trott LB, Garth JS (1970) Lissocarcinus orbicularis Dana (Portunidae, Caphyrinidae), commensal with Holothuria argus Jaeger—a new host record; cohabitation with the pearlfish Carapus homei (Richardson). Crustaceana 19: 30–321Google Scholar
  57. Trott LB, Trott EB (1972) Pearlfishes (Carapidae: Gadiforme) collected from Puerto Galera, Minobra, Philippines. Copeia 1972:839–843Google Scholar
  58. Tyler JC, Robins CR, Smith CL, Gilmore RG (1992) Deepwater populations of the western Atlantic pearlfish Carapus bermudensis (Ophidiiformes: Carapidae). Bull Mar Sci 51:218–223Google Scholar
  59. Van Den Spiegel D, Jangoux M (1987) Cuverian tubules of the holothuroid Holothuria forskali (Echinodermata): a morphofunctional study. Mar Biol 96:263–275Google Scholar
  60. Van Den Spiegel D, Jangoux M (1989) La symbiose entre poissons Carapidae et Holoturies autour de l’île de Laing (Mer de Bismarck, Papouasie Nouvelle Guinée). Indo-Mal Zool 6:223–228Google Scholar
  61. Van Den Spiegel D, Jangoux M, Flamang P (2000) Maintaining the line of defense: regeneration of Cuverian tubules in the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Biol Bull (Woods Hole) 198:34–49Google Scholar
  62. Van Meter VB, Ache BW (1974) Host location by the pearlfish Carapus bermudensis. Mar Biol 26:379–386Google Scholar
  63. Verbist JE (1993) Pharmacological effects of compounds from echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies. Balkema, Rotterdam, pp 111–186Google Scholar
  64. Weber M (1913) Die fische der Siboga-Expedition. Siboga-Exped 32:1–710Google Scholar
  65. Wells HW, Wells M (1961) Observations on Pinnaxodes floridensis: a new species of pinnotherid crustacean commensal in holothurians. Bull Mar Sci 11:267–279Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Bât. B6Université de LiègeLiègeBelgium

Personalised recommendations